Parallelization and lock-free
programming




What properties does the program executed by thread t have?

AtomicInteger x = new AtomicInteger(0);

thread t
int v;
do {
v = x.get();
V=V+1;

} while (!x.compareAndSet(v - 1, v));

it is starvation free
it is lock free
it is lock free, and hence also wait free

P 0N~

it is wait free, and hence also lock free

23/42



What properties does the program executed by thread t have?

AtomicInteger x = new AtomicInteger(0);

thread t
int v;
do {
v = x.get();
V=V+1;

} while (!x.compareAndSet(v - 1, v));

it is starvation free
it is lock free
it is lock free, and hence also wait free

P 0N~

it is wait free, and hence also lock free

23/42



N

S G W

What properties does the program executed by thread t have?

AtomicInteger x = new AtomicInteger(0);

int v;
for (int i = 0; i < 10_000; i++) {

A WO N =

thread t

v = x.get();

v=yv+1;

if (x.compareAndSet(v - 1, v))
break;

. it is starvation free

. itis lock free

. itis lock free, and hence also wait free
. it is wait free, and hence also lock free

24/42



N

S G W

What properties does the program executed by thread t have?

AtomicInteger x = new AtomicInteger(0);

thread t
int v;
for (int i = 0; i < 10_000; i++) {
v = x.get();
v=yv+1;

if (x.compareAndSet(v - 1, v))
break;

. it is starvation free
. itis lock free
. itis lock free, and hence also wait free

AW N =

. it is wait free, and hence also lock free

Note that the increment may fail after trying 10’000 times.
24/42



What does function pm(L) compute?

pm([X[[1]) -> X;
pm([X[[Y|[11]) -> if X > Y -> X; true -> Y end;
pm(L) -> M = length(L) div 2, {A, Z} = lists:split(M, L),
Me = self(),
spawn(fun () -> Me ! pm(A) end),
spawn(fun () -> Me ! pm(Z) end),
receive B -> B end, receive Y -> Y end, pm([B, YI]).

the sum of elements in L
the maximum of elements in L

the minimum of elements in L

P 0N~

a sorted copy of L

25/42



What does function pm(L) compute?

pm([X[[1]) -> X;
pm([X[[Y|[11]) -> if X > Y -> X; true -> Y end;
pm(L) -> M = length(L) div 2, {A, Z} = lists:split(M, L),
Me = self(),
spawn(fun () -> Me ! pm(A) end),
spawn(fun () -> Me ! pm(Z) end),
receive B -> B end, receive Y -> Y end, pm([B, YI).

the sum of elements in L
the maximum of elements in L

the minimum of elements in L

P 0N~

a sorted copy of L

25/42



How many tasks may execute in parallel when computing the factorial
of n?

class Factorial extends RecursiveTask<Integer> {
int n; // number to compute factorial of
protected Integer compute() {
if (n <= 1) return 1;
Factorial f = new Factorial(n - 1);
f.fork();
return n x f.join();

n! (the factorial of n)
n

it depends on the number of available cores

P 0N~

there is practically no parallelism

26/42



How many tasks may execute in parallel when computing the factorial
of n?

class Factorial extends RecursiveTask<Integer> {
int n; // number to compute factorial of
protected Integer compute() {
if (n <= 1) return 1;
Factorial f = new Factorial(n - 1);
f.fork();
return n x f.join();

n! (the factorial of n)
n

it depends on the number of available cores

P 0N~

there is practically no parallelism

26/42



How many processes may execute in parallel when computing the
factorial of n?

fact(1l) -> 1;
fact(N) ->
Me = self(),

spawn(fun () -> Me ! fact(N-1) end),
receive F -> NxF end.

1. n! (the factorial of n)

2. n

3. it depends on the number of available cores
4. there is practically no parallelism

27/42



How many processes may execute in parallel when computing the
factorial of n?

fact(1l) -> 1;
fact(N) ->
Me = self(),

spawn(fun () -> Me ! fact(N-1) end),
receive F -> NxF end.

1. n! (the factorial of n)

2. n

3. it depends on the number of available cores
4. there is practically no parallelism

27/42



How many tasks may execute in parallel when computing the sum of
integers from 1 to n?

class Sum extends RecursiveTask<Integer> {

int m, n; // sum integers from m to n

protected Integer compute() {

poOp =

if (m > n) return 0;

if (m == n) return m;

int mid = m + (n-m)/2; // mid point
Sum lower = new Sum(m, mid);

Sum upper = new Sum(mid+1l, n);
lower.fork(); upper.fork();

return lower.join() + upper.join();

2" (2 to the power of n)

n? (the square of n)

n

there is practically no parallelism

28/42



How many tasks may execute in parallel when computing the sum of
integers from 1 to n?

class Sum extends RecursiveTask<Integer> {

int m, n; // sum integers from m to n
protected Integer compute() {

poOp =

if (m > n) return 0;

if (m == n) return m;

int mid = m + (n-m)/2; // mid point
Sum lower = new Sum(m, mid);

Sum upper = new Sum(mid+1l, n);
lower.fork(); upper.fork();

return lower.join() + upper.join();

2" (2 to the power of n)
n? (the square of n)
n

there is practically no parallelism

28/42



