
Erlang and message passing



What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {self(), 0},

Q ! {self(), 2}.

q() -> % P is P’s pid

receive {P, N} ->

io:format("~p", [N+1]) end,

q().

1. 0 and 2, in any order

2. 0 and then 2

3. 1 and then 3

4. 1 and 3, in any order

25 / 47



What does process Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {self(), 0},

Q ! {self(), 2}.

q() -> % P is P’s pid

receive {P, N} ->

io:format("~p", [N+1]) end,

q().

1. 0 and 2, in any order

2. 0 and then 2

3. 1 and then 3

4. 1 and 3, in any order

25 / 47



What do processes P and Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {Q, 0},

receive {P, N} ->

io:format("~p", [N+1])

end.

q() -> % P is P’s pid

P ! {P,2},

receive {Q, N} ->

io:format("~p", [N+1])

end.

1. 0 and 2, in any order

2. 0 and then 2

3. 1 and then 3

4. 1 and 3, in any order

26 / 47



What do processes P and Q print?

process P process Q

p() -> % Q is Q’s pid

Q ! {Q, 0},

receive {P, N} ->

io:format("~p", [N+1])

end.

q() -> % P is P’s pid

P ! {P,2},

receive {Q, N} ->

io:format("~p", [N+1])

end.

1. 0 and 2, in any order

2. 0 and then 2

3. 1 and then 3

4. 1 and 3, in any order

26 / 47



What does process Q print?

process P process Q

p() -> % Q is Q’s pid

self() ! self(),

receive self() ->

Q !

{self(),

fun (Y) -> Y+1 end}

end.

q() -> % P is P’s pid

receive {P, F} ->

io:format("~p", [F(3)]) end.

1. 3

2. 4

3. P’s pid (process identifier)

4. Q’s pid (process identifier)

27 / 47



What does process Q print?

process P process Q

p() -> % Q is Q’s pid

self() ! self(),

receive self() ->

Q !

{self(),

fun (Y) -> Y+1 end}

end.

q() -> % P is P’s pid

receive {P, F} ->

io:format("~p", [F(3)]) end.

1. 3

2. 4

3. P’s pid (process identifier)

4. Q’s pid (process identifier)

27 / 47


