
A TUTORIAL INTRODUCTION TO
SHARED MEMORY CONCURRENCY

K. V. S. PRASAD
(FOR THE COURSE TDA384/DIT391)

DEPARTMENT OF COMPUTER SCIENCE
CHALMERS UNIVERSITY

We begin concretely and directly with a standard concurrent program-
ming language. That is, we begin by merely presenting some standard tech-
niques of the day, as if they came directly by applying reason to the world.
But of course they didn’t. It is instructive and enriching to learn when and
why a technique or view arose, and to see how it has changed or can change
our world. We do a bit of this later in the course.

Here, we learn to program in Promela[1, 2], a language that shares the
approach to concurrency taken by languages such as Java, Erlang and Ada.
But it is much easier to directly get into concurrent programming using
Promela than any of the other languages. Later, we see what language
aspects are missing in Promela, and why it is a modelling or specification
language rather than a full-fledged programming language.

Promela sources. Section 4.7 of the textbook[3] is an introduction to Promela.
Ben-Ari also gives many example programs linked to the textbook, in Promela,
Java, C and Ada.

There are many good lecture slides for Promela available on the web,
for example [4, 5, 6, 7], but these are often from somewhat more advanced
courses, so you might want to look at them after you have learned a little
more. Or skim them without worrying about the bits you don’t understand.

Acknowledgement: Much of the description of Promela constructs below
has been adapted from the sources [1, 2, 3, 5, 6, 7]. I thank my colleagues
Ann Lilieström, Raùl Jiménez and Nicholas Smallbone for their help in
improving this document.

1. The Spin interface

The first thing to do is to run our very own Spin interface.
Near the top left is a cheat sheet, for later use. To close the cheat sheet,

click on the close window link at the top left of the sheet. Turn off all the
radio buttons in the top right hand pane (labelled “variables”, “events”,
etc.). You are now ready to start.

Date: July 14, 2018.
1

http://www.cse.chalmers.se/edu/course/TDA383/addi_mat.html
http://www.weizmann.ac.il/sci-tea/benari/books/pcdp2-programs-1-0.zip
http://www.cse.chalmers.se/edu/course/TDA383/spin/

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 2

/* Just to show you how to put comments in.
*/
init {printf("Hello World!\n")}

Figure 1. hello.pml

1.1. Hello World. Click on examples at the top left. From the drop-down
menu choose hello.pml, the obligatory first program. This looks reassur-
ingly like languages you have seen before[8], except that the keyword main
has been replaced by init. The printf command is similar to its namesake
in C. Its first argument is an arbitrary string in double quotes. The sequence
“backspace n” inserts a newline.

$ spin hello.pml
Hello World!

1 process created

Figure 2. Output from hello.pml

Run the program by clicking on the Run button, and you will see the
output above in the bottom right hand pane. The top line tells you what
the interface did — it ran the Spin interpreter— and the second line is the
printout we asked for. The third line tells us that init was run as a process.

2. Concurrent Processes

Ordinary sequential programs consist of a sequence of commands to be
executed by a nameless active entity, which we perhaps think of as the
CPU, or just “the computer” or even “it”—as in “why did it do that?”,
the despairing cry familiar from debugging. This active entity manipulates
data, which is passive.

In a concurrent program, all activity is carried out by processes (you can
think of them as actors or agents), several of which may be active at the
same time. What “active at the same time” means we will see shortly. Each
process is like a sub-program, manipulating data which is either local to
itself (i.e., private) or global, (i.e., shared with other processes).

2.1. The proctype declaration and the run command. In a Promela
program, init is a special process, declared and run by the init keyword.
It runs once, and is used to initialize variables and run other processes.

Every other process, like Q in one-Q.pml, must have its code defined by
a proctype declaration. When Q is run (or spawned) by another process1,
it becomes active, and can execute its code2. An active process terminates

1We call the spawning process the parent and the spawned process the child.
2Note that run does not mean “run to completion”. That would just be a procedure

call. Parent and child would not then be able to run at the same time.

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 3

/* A process that prints out its name */

proctype Q() {
printf("Q\n")

}

init { run Q()}

Figure 3. one-Q.pml

when it reaches the end of its code, and all the processes that it spawned
have terminated. So init in one-Q.pml terminates when Q does.

When you run one-Q.pml, it prints out “Q” and tells you that 2 processes
were created—Q and init. It’s true that hello.pml did as much with less
machinery, but the point of a proctype is that more than one instance can
be run. If the code in Q is big, it saves us rewriting, just like a procedure
or function.

/* Three instances of a process that prints out its name */

proctype Q() {
printf("Q\n")

}

init { run Q(); run Q(); run Q()}

Figure 4. three-Qs.pml

2.2. Multiple instances of the same process. Three-Qs.pml might
seem silly too. It always prints out Q on three successive lines. But the out-
put from Spin includes monitoring information—the amount of indentation
says which process is printing, and when you run threeQs.pml repeatedly,
you see differing patterns. If we use differing concurrent processes, we see
why.

2.3. Processes with parameters. In the program id-print.pml, the
proctype declaration for P says that it takes a parameter of type int. Very
like a procedure or function taking parameters, this allows, in the last line
of the program, init to run two instances of P, one with the parameter 3
and one with the parameter 7. So we get P(3) and P(7) active concurrently.

In the printf command, the “%d” inside the string shows where the
value of the variable i, listed after the string, is to appear. The “d” says the
integer i is to be printed out in decimal format. The syntax comes from C.

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 4

/* processes printing ids, to see who went first.*/

proctype P(int i) {
printf("P(%d)\n", i)

}

init { run P(3); run P(7)}

Figure 5. id-print.pml

Try running this program repeatedly. It will sometimes print “P(3)”
followed by “P(7)”, and sometimes “P(7)” followed by “P(3)”. Can you
guess why?

2.4. Interleaving and Non-determinism. In id-print.pml (5), the con-
current processes P(3) and P(7) had only one command each to execute, so
we had two possible outputs. What if each had two commands?

/* Shared printing of a sentence, active processes.*/

active proctype P() {
printf("John\n");
printf("read\n")

}

active proctype Q() {
printf("the\n");
printf("book\n")

}

Figure 6. shared-sentence.pml

The program shared-sentence.pml (6) uses a new keyword, active,
which prefixed to a proctype definition means that an instance of that proc-
type will be active in the initial system state. Using active can often make
init superfluous. (But processes that are instantiated through an active
prefix cannot be passed arguments. This last is not quite the truth, but will
do for now).

Run the program. You will see that the output sequences consist of all
possible permutations of the words in “John read the book,” with the re-
striction that “John” precedes “read”, and “the” precedes “book.” (Precedes,
but not necessarily immediately). Do you understand why?

2.4.1. Scheduling: Active does not mean running. init in id-print.pml
(5) makes first P(3) and then P(7) active. In shared-sentence.pml (6),
both P and Q are active at the start. But active in concurrency parlance

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 5

does not mean running; it only means ready to run. When an active process
actually runs is up to a scheduler, a run-time support entity that allocates
CPU time to processes.

A fundamental assumption in concurrent programming is that there is no
one-to-one mapping between CPUs and processes. There might be exactly
as many CPUs as processes, or fewer or more. The CPUs may be shared
with other users and other programs. We do not know when an active
process is actually running, and there is no way to find out from within the
program.

2.4.2. Non-determinism. Because of scheduling (and bus arbitrators, and
delays for I/O, for accessing busy resources, etc.), concurrent programs are
necessarily non-deterministic. A program can behave differently on different
runs, even with the same input.

A little reflection reveals one consequence: debugging will not work as it
does for sequential programs. We might spot the symptoms of a bug, but
we cannot catch the bug by break points and re-running because there is no
guarantee that a bug will reappear when we want it to. We will see later
how to debug concurrent programs.

Notice that the non-determinism appeared even though there were no
shared variables, which implies nothing very interesting can happen, in one
sense. Each process simply does its own work, and its results are not affected
by the others. But the processes interact via shared resources like CPUs,
buses, I/O devices, web resources, etc., and this affects how fast the processes
actually run.

2.4.3. Assume nothing about how fast a process runs. Suppose you and sev-
eral other students are reading a notice board (but not writing on it or
otherwise modifying it). Your work remains unaffected by the number of
other students, but how long it may take you to do your work cannot be
predicted—if there is a huge crowd around the notice board, it will likely
take you longer to get done with the step “check the notice board”.

So the first rule in building a concurrent program is to assume nothing
about the speed of any process: how long it will take to do anything. If
you have an appointment at 11 o’clock, and you don’t know how long it will
take, you don’t arrange to meet a friend at 12 o’clock. Instead, you say, “I’ll
call you when I’m done.” We return to such programmed synchronisation
after first studying a higher level construct.

3. Atomic actions

Suppose we say that “John read the book” (... that I gave him) and “the
book John read” (... is very famous) are both acceptable phrases, but not
interleavings such as “John the book read”. How can we modify the program
shared-sentence.pml (6) to produce only the two phrases we like, but not
the ungrammatical ones?

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 6

/* Shared printing of a sentence, active atomic processes.*/

active proctype P() {
atomic{
printf("John\n");
printf("read\n")
}

}

active proctype Q() {
atomic{
printf("the\n");
printf("book\n")
}

}

Figure 7. shared-sentence-atomic.pml

A partial solution is to observe that “the” and “book” must not be sep-
arated, and that similarly “John read” should always turn up as one unit.
There is a construct to ensure just such packagings3. A sequence of com-
mands enclosed in curly braces and preceded by the keyword atomic is
executed as one indivisible unit: either the entire sequence is executed or
none of it. The commands in the sequence cannot be interleaved with those
of another processes.

The program shared-sentence-atomic.pml (7) uses atomic actions to
ensure it will only produce one of the two acceptable phrases.

3.1. How big should atomic actions be? Atomic actions remove certain
unwanted interleavings, taming some unwanted non-determinism. What if
they are made as big as possible? If the code for process P is just one atomic
action, then P cannot be used in a program that needs interplay between
processes.

This raises two issues. One is that while non-determinism (here mani-
festing as interleaving) can cause problems, it is not always bad! It arises
from interaction, which is the whole point of concurrent programming. We
will soon see programs that actually use interaction instead of just suffering
from it. Non-interacting concurrent programs are simply independent.

The other is that concurrent processes interacting via say a database
need to lock the database up for as short time as possible, so atomic actions
using the database should be kept short. How short can they be? This is

3Of course we could package such complete phrases into one printf command, and
rely on the atomicity of single commands, but that simply avoids the question of how to
package together what might be independent commands in other contexts.

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 7

an important question both theoretically and historically, as we shall see in
the course.

4. Shared variables, guards and blocking

/* Increment a variable in two processes, to encode who went first. */
int n = 0; int finished = 0;

proctype P(int i) {
n = 10*n + i;
finished++ /* Process terminates */

}

proctype Finish() {
finished == 2; /* Wait for termination */
printf("n = %d\n", n)

}

init { run P(3); run P(7); run Finish()}

Figure 8. id-count.pml

The program id-count.pml (8) is like id-print.pml (5). It too runs
two processes P(3) and P(7), and tells us which ran first, but gives out this
information encoded: the output can be either 37 (if P(3) began first) or 73
(if P(7) began first).

The program id-count.pml is our first with variables! The variable dec-
larations say that n and finished are both of type int and initialised to
0. Note that these variables are global. The encoded output is in n and
finished synchronises the printing of n.

The command finished == 0 looks like a boolean expression; in Promela,
a boolean that constitutes the entire command is called a guard. Executing
the guard B means, if the boolean B is true, then moving on to the next com-
mand, and if B is false, then blocking until B becomes true (which can only
happen because of an action by another, unblocked, process). Blocking (also
called waiting or sleeping) means the process will execute no commands.

So if Finish executes finished == 0 when both P(3) and P(7) have ter-
minated, it executes the printf command next. If either of P(3) or P(7) is
still active, Finish blocks till they both terminate.

4.1. Synchronisation tames non-determinism. Running id-count.pml
(8) produces the expected output, but if you comment out the first line of
Finish (move the /* to the start of the line) and the output can now be not
only 37 or 73, but also 0, 3 or 7. This is because Finish can now run at any

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 8

time, after just one of P(3) or P(7) have run, or even before either. The
non-determinism is greater.

Putting the guard in (uncomment the first line again) cuts out these
unwanted runs. The synchronisation keeps the non-determinism to what we
wanted.

4.2. More on blocked processes. In concurrent programming systems,
the scheduler keeps track of process states. It only allocates CPU time to
active processes, never to blocked or terminated ones. How the process state
is stored and how the scheduler works are part of the run-time support of
the implementation, and no concern of the concurrent programmer.

A guard B can also be though of as while not B do skip, called a busy
wait4. This may indeed be how guards are sometimes implemented (for ex-
ample, if each process has a dedicated CPU). But the scheduler will see a
busy wait as running code, and so will keep allocating CPU time to it. If
there is no other CPU where another process can make B true, any time al-
located to a busy waiting process is just wasted. Worse, if the scheduler runs
runnable processes till they block or terminate5, the busy waiting process
will lock the whole system up.

5. Assertions

So far, we have used Spin to show that runs produce differing outputs for
non-deterministic programs, and quite small amounts of non-determinism
can produce a very large number of outputs, certainly too large to check
them all manually. For example, take program demo-assert.pml (9), a
slight extension of id-count.pml (8). It’s easy to see that this program will
produce 133579 ≤ n ≤ 975331, but it’s hard to get either 133579 or 975331
by simply saying “Run” to Spin. It chooses the interleaving sequence, and
there are 360 possible outputs (do you see why?). (It is possible to get
Spin to make choose a particular path through the non-determinism using
“Interactive”—try it with a small program like id-print.pml (5)).

Clearly, exhaustive testing of a concurrent program is not possible by
literally watching every possible run of it. But Spin can do exhaustive
testing (called model checking), by checking if a given property (called an
assertion) holds for every run of a program. In demo-assert.pml (9), there
are three assertions, one of them incorrect and commented out. Run the
program as usual first. Next, ensure “Mode” is set to “Verify” and click
on “Verify”. A few lines down in the input is a line like State-vector
76 byte, depth reached 31, errors: 0, which confirms that your two
assertions hold for every run of the program. By the way, && means logical
“and”, and % means modulo division.

4If you are in a queue and you don’t have a book or a phone or thoughts to keep
you occupied, and are not just calmly switched off either, you end up busy-waiting, an
enervating business.

5A time-sharing scheduler would, after a time-slice, give the CPU to another process.

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 9

/* Assertion demo */
int n = 0; int finished = 0;

proctype P(int i) {
n = 10*n + i;
finished++; /* Process terminates */

}

proctype Finish() {
finished == 6; /* Wait for termination */
printf("n = %d\n", n);

/* assert(n > 133579) */
assert(n\%2==1);
assert(n >= 133579 && n <= 975331)

}

init {run P(3); run P(7); run P(5); run P(1); run P(3); run P(9);
run Finish()}

Figure 9. demo-assert.pml

Next, uncomment the incorrect assertion, turn on the button “Run gen-
erated trail” and “Statements”, and click on “Verify” again. This time, you
are told right at the top that an assertion has been violated, and which one.
Further down, you are shown an execution sequence that leads to n=133579,
violating the assertion.

Oddly enough, you learn more from an assertion that fails, since you
get an example run that violates it. Assertions that succeed give you the
satisfaction of confirming that they hold, but you don’t know why.

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 10

6. Examples

6.1. Control flow. That we have come this far using only sequencing (within
a single process) is a demonstration that concurrency is a powerful control
flow primitive. But we will need if and loops for more meaningful examples.
Both constructs in Promela use guards.

In max.pml (11), the proctype c uses an if construct. This has, between
the keywords if and fi, any number of execution sequences, each preceded
by a double colon. Immediately after the :: comes a guard, followed by
the -> arrow. If one of the guards in an if statement is true, the sequence
following the -> is executed. If more than one guard is true, one of the
corresponding sequences is selected non-deterministically. If all guards are
false, the process will block until one of them becomes true. The else is
only chosen if all the other guards are false.

In count.pml (10), the proctype P uses a loop. This looks very like the
if construct, except that it is bounded by do and od. Only one guard can
be selected at a time. Afterits execution sequence completes, the do loops.
To terminate the repetition, use a break statement, which transfers control
to the instruction immediately following the od.

/* Increment a variable in two processes. Final value can be two!! */
#define TIMES 3
byte n = 0; byte finished = 0;

active [2] proctype P() {
byte i = 1; byte temp;
do
:: (i > TIMES) -> break
:: else ->

temp = n;
n = temp + 1;
i++

od;
finished++; /* Process terminates */

}

active proctype Finish() {
finished == 2; /* Wait for termination */
printf("n = %d\n", n);
assert (n > 3); /* Assert can't be 2 */

}

Figure 10. count.pml

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 11

6.2. Gate count. There are two entries to a park, and as a person comes
in through either gate, we increment the global variable n in the program
count.pml(10). Unfortunately, this is not done by a single (atomic) instruc-
tion n = n+1, but by the sequence temp = n; n = temp+1 (which reflects
what often happens at machine level). If three people enter through each
gate, the final value of n can lie between 2 and 6. As exercises, figure out
how each value can arise. As further exercises, figure out assert statements
to confirm various properties, and to produce not only counterexamples for
final values 1 and 0, but to show you how each possible value arises. What
happens if you use n++ instead of temp = n; n = temp+1? What if you use
atomic{temp = n; n = temp+1}?

int p = 35; int q = 57; int r = 23; int s = 17; int t = 87;
int max = 0; int finished = 0;

proctype c(int i) {
atomic {if

:: (i > max) -> max = i; printf("%d\n", i)
:: else -> skip;
fi};

finished++; /* Process terminates */}

proctype Finish() {
finished == 5; /* Wait for termination */
assert(max >= p && max >= q && max >= r && max >= s && max >= t);
printf("max = %d\n", max);}

init {atomic{run c(p); run c(q); run c(r); run c(s); run c(t)};
run Finish()}

Figure 11. max.pml

6.3. The largest of 5 given positive integers. We have so far not actu-
ally used the power of concurrency, and we have treated non-determinism as
if it were only a bad thing to be tamed. The example max.pml (11) sets this
right. It is a program to print out the largest of 5 given positive integers.

A sequential version of max would have to specify the order in which
the comparisons are made (say p, q, r, s, t); also, it would always update
max thrice (to 35, 57 and 87). Our max.pml might update max 5 times or
just once. And we don’t care about the order of comparisons. Indeed, the
need to specify things we don’t care about is one of the major reasons why
sequential programming is so tedious and error prone.

Experiment with running and verifying the program. What happens if
you comment out the atomic in c? Or move it so that only max = i and
printf are within the atomic but not the comparison i > max? (If you

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 12

comment out the atomic in init, the program will still be verifiable, but
because c is so small, you will find that the processes spawned earlier tend
to finish before the later ones get started, so it’s not as much fun).

6.4. Primes. The program hunt.pml (12) prints out the primes in ascend-
ing order. It does so by letting every integer from 2 to MAX mark all its
multiples as such. When they are all done, the unmarked integers are the
primes. The program retains trace prints to show you the non-determinism
in the work; as in max.pml (11), we do not specify in what order the marking
is to proceed.

7. Ways to study concurrent programming

7.1. Radical. We could note how concurrent processes behave in real life,
and then design programming constructs to produce these behaviours. So
we can now simulate or model the real-life situation we began with. This is
a modern approach made possible by 60 years of experience with concurrent
programming, and indeed we will use this approach sometimes, as we go
along. It will give us radical new ways to program, taking concurrency as
basic, not as an add-on to sequential programming. Sadly, such matters are
outside the main scope of the course, so we can only give you a taste.

7.2. Historical. Alternatively, we can begin with the concrete situation
that faced 1950’s programmers—how to allow the card reader (CDR) and
line printer (LPT) to work largely at the same time as the CPU, instead of
having only one running at a time, which is the obvious way to program.
This leads us, via interrupts and machine level programming, up through
interrupts and semaphores to higher level abstractions.

7.3. Conventional. What we did here. Start from the programming lan-
guage and model you will use.

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 13

#define MAX 30
int p [MAX+1]; /* index goes from 0 to MAX. Will use only 2..MAX */
int finished = 0;

proctype c(int d) {
int n = 2*d;
do
:: n>MAX | p[d]!=1 -> break;
:: else -> if

:: p[n]!=1 -> skip;
:: else -> p[n]=d; printf("%d divides %d\n", d, n);
fi;
n=n+d;

od;
finished++

}

proctype Finish() {
int n = 2;
finished == MAX-1;
do
:: n>MAX -> break;
:: else -> if

:: p[n]==1 -> printf("%d\n",n);
:: else -> skip
fi;
n++

od
}

init {
int n=2;
do
:: n>MAX -> break;
:: else -> p[n] = 1; n++;
od;
atomic{
n=2;
do
:: n>MAX -> break;
:: else -> run c(n); n++
od
};
run Finish()

}

Figure 12. hunt.pml

A TUTORIAL INTRODUCTION TO SHARED MEMORY CONCURRENCY 14

References
[1] Promela - Wikipedia page. https://en.wikipedia.org/wiki/Promela. Accessed:

2016-08-24.
[2] Rob Gerth. Concise Promela reference. http://spinroot.com/spin/Man/Quick.html,

1997. Accessed: 2016-08-24.
[3] Mordechai Ben-Ari. Principles of concurrent and distributed programming, 2006.
[4] Ayu Yusoff. Lecture Slides: Tutorial for Promela, Heriot-Watt University. http://

www.macs.hw.ac.uk/~air/dsp-spin/PROMELA.swf, 2014. Accessed: 2016-08-24.
[5] Wolfgang Ahrendt. Lecture Slides: Introduction to Promela - in the course Software

Engineering using Formal Methods, Chalmers University. www.cse.chalmers.se/edu/
year/2014/course/TDA293/Lectures/Files/PROMELAIntroductionPS.pdf, 2014. Ac-
cessed: 2016-08-24.

[6] Andrew Ireland. Lecture Slides: Promela I - in the course Distributed Systems Pro-
gramming, Heriot-Watt University. www.macs.hw.ac.uk/~air/dsp-spin/lectures/
lec-3-promela-1.pdf, 2014. Accessed: 2016-08-24.

[7] Andrew Ireland. Lecture Slides: Promela II - in the course Distributed Systems Pro-
gramming, Heriot-Watt University. www.macs.hw.ac.uk/~air/dsp-spin/lectures/
lec-3-promela-2.pdf, 2014. Accessed: 2016-08-24.

[8] Creators admit Unix, C hoax. https://www-users.cs.york.ac.uk/susan/joke/c.
htm. Accessed: 2016-08-24.

https://en.wikipedia.org/wiki/Promela
http://spinroot.com/spin/Man/Quick.html
http://www.macs.hw.ac.uk/~air/dsp-spin/PROMELA.swf
http://www.macs.hw.ac.uk/~air/dsp-spin/PROMELA.swf
www.cse.chalmers.se/edu/year/2014/course/TDA293/Lectures/Files/PROMELAIntroductionPS.pdf
www.cse.chalmers.se/edu/year/2014/course/TDA293/Lectures/Files/PROMELAIntroductionPS.pdf
www.macs.hw.ac.uk/~air/dsp-spin/lectures/lec-3-promela-1.pdf
www.macs.hw.ac.uk/~air/dsp-spin/lectures/lec-3-promela-1.pdf
www.macs.hw.ac.uk/~air/dsp-spin/lectures/lec-3-promela-2.pdf
www.macs.hw.ac.uk/~air/dsp-spin/lectures/lec-3-promela-2.pdf
https://www-users.cs.york.ac.uk/susan/joke/c.htm
https://www-users.cs.york.ac.uk/susan/joke/c.htm

	1. The Spin interface
	1.1. Hello World

	2. Concurrent Processes
	2.1. The proctype declaration and the run command
	2.2. Multiple instances of the same process
	2.3. Processes with parameters
	2.4. Interleaving and Non-determinism

	3. Atomic actions
	3.1. How big should atomic actions be?

	4. Shared variables, guards and blocking
	4.1. Synchronisation tames non-determinism
	4.2. More on blocked processes

	5. Assertions
	6. Examples
	6.1. Control flow
	6.2. Gate count
	6.3. The largest of 5 given positive integers
	6.4. Primes

	7. Ways to study concurrent programming
	7.1. Radical
	7.2. Historical
	7.3. Conventional

	References

