
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391

Saturday, 24 October 2020

Exam supervisor: N. Piterman (piterman@chalmers.se, 073 856 49 10)

(Exam set by N. Piterman, based on the course given September-October
2020)

Material permitted during the exam (hjälpmedel):

As the exam is run remotely we cannot realy restrict your usage of mate-
rial.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU

28�41 3 G
42�55 4 G
56�70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU

40�59 3 G
60�79 4 G
80�100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam's date.

Instructions and rules:

� You should be monitored on the dedicated zoom channel while taking
the exam!

� Submit the exam solution as a PDF �le on Canvas. The solution
should be typeset using your favourite software. No scanned hand-
written notes or diagrams are allowed.

� Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

� Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

1



� Answer each question on a new page. Glance through the whole paper
�rst; �ve questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justi�ed by the points it carries.

� Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

� A word template and a tex template are available on Canvas.

2



Q1 (8p). We have seen the following parallel implementation of merge sort (lec-
ture 09, combination of slides 21, 22, and 25):

1 public class PMergeSort extends RecursiveAction {

2 private Integer[] data;

3 private int low, high;

4

5 @override

6 protected void compute() {

7 if (high - low <= 1024) {

8 sort(data,low,high); // sort sequentially small chunks of 1024

9 return; // or less

10 }

11 int mid = low + (high - low)/2; // mid point

12 // left and right halves

13 PMergeSort left = new PMergeSort(data,low,mid);

14 PMergeSort right = new PMergeSort(data,mid,high);

15 left.fork(); // fork thread working on left

16 right.fork(); // fork thread working on the right

17 left.join(); // wait for sorted left half

18 right.join(); // wait for sorted right half

19 merge(mid); // merge halves

20 }

21 }

Notice that the stopping condition is changed from high - low <= 1

to high - low <= 1024 (according to the advice of slides 23 and 24)
but the forking thread is left idle.

The following appears somewhere in the main:

1 RecursiveAction sorter = new PMergeSort(numbers,0,numbers.length);

2 ForkJoinPool.commonPool().invoke(sorter);

Based on the dependency graph (or otherwise) for a run of invoke(sorter)
when the array numbers has 7000 elements, answer the following.

(Part a). How many threads participate in the computation? (4p)

(Part b). What is the maximum number of tasks that can be executed
in parallel in this implementation on the same data (excluding parent
tasks waiting for a child task to �nish)? (4p)

3



Q2 (17p). In this question we create a modi�ed version of the readers-writers
problem. You have to design a monitor class called TypedAccess.
TypedAccess controls a resource that has two types of operations: A
and B. Many A actions can occur at the same time and many B actions
can occur at the same time. But you cannot allow As and Bs together
to occur at the same time.

The monitor should support two methods enter and exit. They both
get a parameter telling which type of access is required ('a' or 'b').
Busy waiting or polling is not allowed.

You should also design a client that uses your monitor.

A skeleton for both the TypedAccess and Client are given on the next
page (this code is also available for you to download in Canvas).

Your task is to implement the following parts:

(Part a). Write the declarations of the variables you will use for
synchronization. Pay attention to types, initialization, and scope. (4p)

(Part b). Complete the implementation of the method enter(int)

according to the description above. (5p)

(Part c). Complete the implementation of the method exit(int)

according to the description above. (5p)

(Part d). Complete the implementation of the Client run method.
(3p)

The rest of this page is left blank on purpose.

4



1 public class MultiAccess {

2

3 private TypedAccess monitor;

4

5 public MultiAccess() {

6 this.monitor = new TypedAccess();

7 }

8

9 class TypedAccess {

10 // Introduce the variables that you need

11

12 TypedAccess() {

13 // Implemented the constructor

14 }

15

16 void enter(char type) {

17 // Implement the enter method

18 }

19

20 void exit(char type) {

21 // Implement the exit method

22 }

23

24 }

25

26 static class Client implements Runnable {

27 protected char type;

28 protected final TypedAccess l;

29

30 Client (char type, TypedAccess l) {

31 this.l = l;

32 this.type = type;

33 }

34

35 public void run() {

36 compute();

37 }

38

39 void compute() {

40 System.out.println("Client " + Thread.currentThread().getId() +

41 " of type " + this.type + " (" + Thread.currentThread().getName() + ")");

42 }

43 }

44 }

5



Q3 (12p). The pseudo-code below is a simpli�ed version of Lamport's bakery
algorithm. It is presented for two processes and with an additional
atomicity assumption. The bakery algorithm solves the critical section
(CS) problem for every (known) number of processes. However, it
allocates an (unbounded) integer per process (and additional Boolean
variables).

int n[2]= {0,0};

p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: n[0] = n[1]+1; q2: n[1] = n[0]+1;
p3: while(n[1]>0 && n[1]<n[0]) { }; q3: while(n[0]>0 && n[0]<= n[1]) { };
p4 //CS (critical section) q4 //CS (critical section)
p5: n[0]=0; q5: n[1]=0;

} }

Notice that the instructions in p2 and q2 are executed atomically (!).
For simplicity, we consider only locations 2, 3, and 5. So, for example,
p starts in location p2 (considered the non-critical section), it moves
from p3 to p5 directly and from p5 to p2 directly, and p5 is considered
the critical section. The label pi can mean the command that follows
pi, or the proposition that thread p is at pi, and the next command p

will execute is pi.

(Part a) Show that n[0] ≥ 0∧ n[1] ≥ 0 is an invariant of the program.
That is, it always holds. Show that it holds initially and that it is
preserved under every transition of both processes. (2p)

(Part b) Show that ((p3 ∨ p5) ⇐⇒ n[0] > 0) is an invariant of the
program. Show that it holds initially and that it is preserved under
every transition of process p. (2p)

Use the invariant ((q3 ∨ q5) ⇐⇒ n[1] > 0) without proof.

(Part c) Show that if (p3∨p5)∧ (n[1] = 0∨ n[1] ≥ n[0]) then whatever
q does cannot change that. That is, if p is in locations p3 or p5 and it
happens to be that either n[1] = 0 or n[1] ≥ n[0] then all transitions of
q maintain this. (4p)

Similarly, p cannot change the truth value of (q3∨q5)∧(n[0] = 0∨n[0] >
n[1]). You can use this without a proof.

(Part d) Show that the program satis�es mutual exclusion. (4p)

6



Q4 (16p). In this question we create a modi�ed barrier in Erlang. The Erlang
barrier we have seen in class is below (this code is also available for
you to download in Canvas):

This barrier ensures that the di�erence in number of completed rounds
between clients is at most 1. That is, the most advanced client can
complete a round while the least advanced client has not started it yet.

Change the behaviour of the barrier so that the di�erence in number of
rounds between di�erent clients is at most 2 and not at most 1. This
means, for example, that a client that is 2 rounds behind all other
clients could do 4 rounds in a row becoming 2 rounds before all the
others.

You should not change the wait function.

Notice that if your new barrier is not tail recursive you will not be
awarded the maximal points.

(Part a). Implement the server. Explain the role of the elements of
the server's state. (8p)

7



In order to test your barrier you need to try it with several clients.
Design a client program and a client coordinator that will enable to
test the barrier. The client should approach the barrier N times. The
�work� that it should do before getting to the barrier is print the client's
ID and its round number (in descending order: N, N-1, ..., 1). The
client coordinator, should get the value N and a list of 2N values in
{1, 2}, it should initialize two clients and try to schedule their runs
so that they perform the actions in this order. For example, if the
sequence is [1, 1, 1, 1, 2, 2, 2, 2] client 1 should try to access the barrier 4
times (it will be stopped after 2) and then client 2 will access the barrier
4 times. A more interesting example would be [1, 1, 2, 2, 2, 2, 1, 1] that
should result in exactly the sequence of accesses [1, 1, 2, 2, 2, 2, 1, 1].

(Part b). Implement the client and its initialization function. Explain
the client state (if exists). (4p)

(Part c). Implement the coordinator. There is no need for the coor-
dinator to check the consistency of its parameters. (4p)

8



Q5 (17p). The following program is an attempt to implement a Barrier with
compare-and-swap. Recall that a compare-and-swap operation (cas)
gets two parameters. It atomically compares the value of the variable
to the �rst parameter and, if they are equivalent updates the variable
to the second parameter and returns true. If they are not equivalent
it does not change the value of the variable and returns false. You are
requested to analyze the transition table of this concurrent program to
check what went wrong.

int b= 0;

p q

while(true) { while(true) {
p1 //Pre entrance q1 //Pre entrance
p2 do{ q2 do{
p3: lp= b; q3: lq= b;
p4: } while(!b.cas(lp,lp+1)); q4: } while(!b.cas(lq,lq+1));
p5: while(!b.cas(2,0) { }; q5: while(b>0) { };
p6 //Post entrance q6 //Post entrance

} }

The state of the program is a quintuple, (pi, qj , b, lp, lq), where i and j
range over {3, 4, 5}, and b, lp, lq are integers. For simplicity, whenever
lp and lq are not de�ned (i.e., locations 3 and 5) we denote their
value by ⊥. It so turns out that only 14 states are reachable.

Here is a partial state transition table for the program above. As men-
tioned, only 14 states are reachable from the initial state (p3, q3, 0,⊥,⊥).

state new state if p moves new state if q moves

s1 (3, 3, 0,⊥,⊥) (4, 3, 0, 0,⊥) = s5 (3, 4, 0,⊥, 0) = s2

s2 (3, 4, 0,⊥, 0) (3, 5, 1,⊥,⊥) = s4

s3 (3, 5, 0,⊥,⊥)
s4 (3, 5, 1,⊥,⊥) no move (s4)

s5 (4, 3, 0, 0,⊥) (5, 3, 1,⊥,⊥) = s10

s6 (4, 4, 0, 0, 0)

s7 (4, 5, 0, 0,⊥)
s8 (4, 5, 1, 1,⊥) no move (s8)

s9 (4, 5, 1, 0,⊥)
s10 (5, 3, 1,⊥,⊥) no move (s10)

s11 (5, 4, 1,⊥, 0)
s12 (5, 4, 1,⊥, 1) no move (s12)

s13 (5, 5, 1,⊥,⊥)
s14 (5, 5, 2,⊥,⊥)

(Part a) Fill in the blank entries in the table. (8p)

9



(Part b) Point out what goes wrong in the protocol (a very short
explanation is enough). (2p)

(Part c) Indicate one transition in the table that needs to be removed
for the protocol to work correctly. Explain how does this solution
capture the notion of a barrier. (7p)

10


