
Concurrency in weak
memory models

Andreas Lööw
Chalmers, 4th year PhD student, formal methods

(= mathematical reasoning about software and hardware)

Aim of talk

Memory model related differences between programming in:
• “modelling languages” like Promela and pseudocode, and
• ”real languages” like Java.

The talk is both Java specific and not Java specific:
• Java used as an example of a language with a “weak memory model”,
• but at least (subsets of) C and C++ similar

Talk in one slide

In “modelling languages”, synchronization is used for:
• atomicity

In “real languages”, synchronization is used for:
• atomicity, and
• visibility

Outline

• What are memory models?

• Why weak memory models?

• Something about the Java memory model (as an example of a weak
memory model)

• Programming in the Java memory model

Outline

• What are memory models?

• Why weak memory models?

• Something about the Java memory model (as an example of a weak
memory model)

• Programming in the Java memory model

Java has a ”weak memory model”

• Memory model part of language semantics (what programs mean)

• Different memory models exist

• In pseudocode, sequential consistency (SC) often assumed -- one of
the ”strongest” memory models

• Java, instead, offers the Java memory model (JMM), one particular
”weak” memory model

OK… but what is a memory model?

• More or less: Semantics of shared variables (and synchronization)

• Consider the question: What values are variable reads allowed to
return?

• ???

Reading variables: Sequential programming

Obvious answer: The latest value we wrote to the variable

int x = 0, y = 0;
x = 1;
y = 1;
print(y); // will obviously print 1
print(x); // again, prints 1

Reading variables: Concurrent programming

int x = 0, y = 0;

t1 {
x = 1;
y = 1;

}

t2 {
print(y);
print(x);

}

Simple! Just consider the non-
deterministic interleavings!

E.g., t1 completes before t2:
1
1

Or, other interleaving:
0
1

Reading variables: Concurrent programming

int x = 0, y = 0;

t1 {
x = 1;
y = 1;

}

t2 {
print(y);
print(x);

}

But can we print the following?
1
0

Depends on memory model:

• Sequential consistency: No!

• Java memory model: Yes!

Reading variables: Sequential consistency (SC)

int x = 0, y = 0;

t1 {
x = 1;
y = 1;

}

t2 {
print(y);
print(x);

}

”Program order” always maintained in CS

In particular, x = 1 always before y = 1 in
any interleaving

Consequently, will not see
1
0

But the above program order guarantee not
provided by some weak memory models!

Reading variables: Weak memory models

int x = 0, y = 0;

t1 {
x = 1;
y = 1;

}

t2 {
print(y);
print(x);

}

”Interleaving-based semantics” in
some sense the ”obvious” semantics
for concurrency

Why make things more difficult?
Why give up program order and
other nice things?

Because: SC costs too much

Outline

• What are memory models?

• Why weak memory models?

• Something about the Java memory model (as an example of a weak
memory model)

• Programming in the Java memory model

SC cost 1: Prohibits (too many) compiler
optimizations
• Aaaaah!!! Messiness! Real-world things! In pseudocode we do not

have to consider ugliness such as compiler ”details” etc.

• Example: For some compiler optimizations we want to reorder writes
to variables. (For whatever reason: Might improve register allocation
or anything.)

SC cost 1: Prohibits (too many) compiler
optimizations
• E.g., the transformation to the right

“semantics preserving” in
sequential setting if we only
consider final state of program

• Not equivalent if we can inspect
program under execution, which
we can if x and y are shared
variables in a concurrent setting

• Breaks illusion of “program order”!

Original program:
x = 1;
y = 2;
z = x + y; // x = 1, y = 2, z = 3

Transformed program:
y = 2;
x = 1;
z = x + y; // x = 1, y = 2, z = 3

Write order
swapped

SC cost 2: Causes too much cache
synchronization
Cost of SC not obvious with too simplified machine models:

Shared global memory

CPU CPU CPUCPU

SC cost 2: Causes too much cache
synchronization
More realistic (but not realistic) model of today’s computers:

Shared global memory

CPU CPU CPUCPU

Local cache Local cache Local cache Local cache

Small but fast compared to
global shared memory. (In

real machines: multiple
layers of cache.)

Large but slow shared
memory Want to keep

computations local.
Communication with other

CPUs = overhead.

Problem with SC: If all
CPUs are to always see

latest value, must push all
writes through slow shared

resources

Btw, modern CPUs execute
instructions out-of-order
and in parallel (which can

also break illusion of
program order)

Why not SC: Summary

• Not a complete list of reasons, just two examples!

• Anyhow, in summary:
SC too expensive in many situations

• Solution to mentioned problems:
Relax some guarantees offered by SC à we get weak memory models

• Weaker memory models (potentially) more performant, but more difficult
to program in

Outline

• What are memory models?

• Why weak memory models?

• Something about the Java memory model (as an example of a weak
memory model)

• Programming in the Java memory model (as an example of
programming in a weak memory model)

The Java memory model

• Less convenient than SC, but implementable on modern machine
architectures without too much performance loss

• Opinion: Memory model part of language design, and different
coordinates in the design space have different tradeoffs. As with any
other language feature: No “right” answer.

Design tradeoff space

Performance à

Di
ffi

cu
lt

to
 u

se
 à

Sequential consistency

Java memory model

Even weaker memory models

More context: Some more machine details

Physical machine

Java

Programmer
Java programmers

program in Java
memory model

Java compiler developers must
implement Java memory model

in the memory model of the
underlying machine (different

machines have different memory
models etc.)

Just as Java “shields” us
from the machine’s

assembly language, Java
shields us from the
machine’s memory

model

SC for data-race-free programs

• A few (C-like) languages have converged at ”sequential consistency for
data-race-free programs” memory models

• Java included in this family

• Reasoning principle: If there are no data races (under SC), we can
assume SC when reasoning about our program

• Important to remember definition of data race (and difference with
race conditions)

Data races

Slight variation of previous definition you seen, to fit Java better:

Def. Two memory accesses are in a data race iff
• they access the same memory location simultaneously (they are interleaved next to each other),
• at least one access is a write,
• insufficient explicit synchronization used to protect the accesses

Def. A program is data-race-free iff no SC execution of the program contain a data race.

(“Slight variation”? Note that we quantify over all SC executions in the second definition.)

Note that data-race-freedom is a ”language-level” property!

Definition of data race surprisingly subtle

E.g., does this program contain any data races?

bool x = false, y = false;

t1 {
if (x) y = true;

}

t2 {
if (y) x = true;

}

No!

Race conditions

Definition from course slides:

Def. A race condition is a situation where the correctness of a
concurrent program depends on the specific execution.

Note that this is an ”application-level” property!

I.e., for a given program p, to answer the question ”is p free from race
conditions?” we must have access to the specification of p.

SC for data-race-free programs, again

• For Java programs, we have SC for programs without data races

• Presence of race conditions does not rob us of SC – important to
know (the difference between) the two definitions

• What about the semantics of programs with data races?
• Will not be considered here
• In e.g. C++ data races result in undefined behavior (see C++ specification or

https://en.cppreference.com/w/cpp/language/memory_model)
• Java is supposed to be a ”safe language”, some guarantees (e.g. out-of-thin-air

safety)

https://en.cppreference.com/w/cpp/language/memory_model

Outline

• What are memory models?

• Why weak memory models?

• Something about the Java memory model (as an example of a weak
memory model)

• Programming in the Java memory model (as an example of
programming in a weak memory model)

Practice?

• But what does this mean in practice?

• I.e: How does “weak memory models” affect my daily life as a
programmer?

• Answer: You must “annotate” your program more (compared to CS).
“Annotations” in the form of variable qualifiers, synchronization
mechanisms etc.

• Essentially annotating which things are shared and which are not

Simple example

Finally, an example!!!

bool done = false;

t1 {
done = true;

}

t2 {
if (done) print(33);

}

• Does this program contain
• data races?
• race conditions?

• Data race = yes, done is accessed without
synchronization and one of the accesses is a write

• Race condition = depends on the specification we
are to satisfy (what it means for the program to be
correct)

• (Note: Difficult to reason about race conditions
(correctness) because we cannot assume SC
because we have data races!)

Simple example

Finally, an example!!!

bool done = false;

t1 {
done = true;

}

t2 {
if (done) print(33);

}

• Wait a minute!

• Are you telling me there’s a problem in this
program?

• From a SC perspective, everything is fine!

• No atomicity problems or anything like that… but
visibility problems!

Simple example (fixed)

Finally, an example!!!

volatile bool done = false;

t1 {
done = true;

}

t2 {
if (done) print(33);

}

• Solution: Annotate your program. E.g., in Java
volatile is considered synchronization.

• Does this program contain
• data races?
• race conditions?

• Data race = no, in Java volatile accesses are
considered synchronized

• Race condition = ???, still depends on specification

Simple example (fixed)

Finally, an example!!!

volatile bool done = false;

t1 {
done = true;

}

t2 {
if (done) print(33);

}

Example specification:

• Spec = “If the program outputs something, it must
output 33”

• (In other words: Spec = “Output nothing or 33”)

• Race conditions w.r.t. above specification?

• No race conditions! (As correct output does not
depend on specific “execution”/ interleaving.)

Simple example (fixed)

Finally, an example!!!

volatile bool done = false;

t1 {
done = true;

}

t2 {
if (done) print(33);

}

Example specification:

• Spec = “The program outputs 33”

• Race conditions w.r.t. above specification?

• Yes, have race condition. Some
interleavings give us correct output, others
do not.

Similar example, with locks

lock lock = new lock();
int id = 0;

t1 {
lock.lock();
id++;
lock.unlock();

}

t2 {
print(id);

}

Data races?

We have a race! All accesses to the shared
variable done must be synchronized!

Here we have (again) atomicity, but not:
visibility

id flag might exist as multiple copies…
lock lock = new lock();
int id = 0;

t1 {
lock.lock();
id++;
lock.unlock();

}

t2 {
print(id);

}

Shared global memory

CPU (t1) CPU (t2)

Local cache Local cache
id = 1id = 0 id = 0

Might read ”stale” value
here. Maybe does not

matter in this example, but
could matter in other

situations

NOTE: Everything on this slide simplified, and makes unsound assumptions about JVM implementation details

If we would have locked
here, CPU would have

been forced to fetch latest
value from external source

instead of local cache

Similar example, with locks (fixed)
lock lock = new lock();

int id = 0;

t1 {

lock.lock();

id++;

lock.unlock();

}

t2 {

lock.lock(); // new

print(id);

lock.unlock(); // new

}

This is how the program would look like with
proper annotations/synchronization

No data races in sight!

Another example

int x = 1;

x = 2;
// What can be printed?
Thread t = new Thread(() ->
System.out.println(x));
t.start();

• Data race because t reads x
without synchronization?

• (Could potentially argue read and
write not overlapping in any CS
execution.)

• More detailed reasoning principle:
x write happens-before x read
(remember screenshot on previous
slide…)

Reading suggestions

• See Java Concurrency in Practice (2006) if you want
more of this. The book presents simplified rules you can
follow to do concurrent programming in Java instead of
having to learn the details of the Java memory model.

• E.g., the book provides useful “safe publication
idioms”

• Also e.g.: Hans-J. Boehm, “Threads cannot be
implemented as a library” (2005).
(https://doi.org/10.1145/1065010.1065042)

• Also e.g.: Hans-J. Boehm and Sarita V. Adve, “You
don’t know jack about shared variables or memory
models” (2012).
(https://doi.org/10.1145/2076450.2076465)

https://doi.org/10.1145/1065010.1065042
https://doi.org/10.1145/2076450.2076465

Summary?

• Make sure to not have data races in your Java programs

• One way to think about all of this: Atomicity and visibility

• Visibility aspect new in weak memory models compared to SC!

If you only will remember one thing, please:

In concurrent programming in Java, not only do we have to consider
atomicity, we also must consider visibility!

visibility visibility

visibility visibility visibility

v i s i b i l i t y

Ack: https://www.hboehm.info/misc_slides/10-pldi-adve-boehm-tutorial.pdf was useful when creating these slides

https://www.hboehm.info/misc_slides/10-pldi-adve-boehm-tutorial.pdf

