
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lecture 8: Introduction to Message Passing (m.p.)

K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

Monday 10 Feb 20

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 1 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Shared memory recap

Examples:
Critical section (atomic actions)

▶ Mutex needed
▶ Avoid deadlock, livelock, starvation and deadlock/busy-waiting

Producer consumer
▶ With semaphores, each depends on the other for correctness

Dining philosophers
▶ Show deadlock/livelock problems with symmetric waiting

Readers and Writers (not yet done in class)
Other examples Dining philosophers Readers and Writers

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 2 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Shared memory solutions

Test-and-set (hardware) with busy wait
Semaphores

▶ Correctness of processes can be interdependent
▶ Clear modularity must remain implicit

Monitors (saw very briefly)
▶ Need condition queues with explicit waitC and signalC operations
▶ mutex ops, and modular, but suppose producer waits because buffer is

full, and consumer takes an item. Should
⋆ producer immediately resume, interrupting consumer’s finishing

activity? (Hoare semantics, messy implementation)
⋆ or should consumer finish up, with producer then coming in? (Mesa

semantics). If there are multiple producers, the woken up process may
find buffer full again. Need to check again on waking up.

Protected objects
▶ Guarded entries, so no condition variables, and no Hoare/Mesa problem
▶ Run-time must check every guard after every call. Needs fair scheduler.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 3 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Verifying shared memory programs

By state diagram — look for counterexamples
▶ bad state

⋆ breaks safety property - nothing bad ever happens
▶ bad loop with no progress

⋆ breaks liveness property - something good eventually happens

By invariants or other reasoning on code

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 4 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Why another model of Concurrency?
Shared memory

seems to work
covers many applications

▶ including multi-core, to be studied later
Dijkstra, Hoare, Lampson won the Turing award for their work here

so why do we need other models?
What is shared memory used for? To communicate. What?

data
events (e.g., buffer not full), i.e., timing or synchronisation

How do people communicate?
talking—we shall briefly look at broadcast later
messages letters, email, or telephone (we talk, but after ringing)

By 1970, computers were talking to each other by phone—Arpanet.
The time was ripe for ...

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 5 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CSP and CCS
Hoare 1978 introduced Communicating Sequential Processes (CSP)

a formalism/mini-programming-language that
▶ used just I/O to solve the concurrency problems for which we use

⋆ Atomic actions, critical regions, semaphores, monitors . . .

How? Email
Can carry data
Can synchronise

▶ We can agree that I wait until you send me email.

Milner (1970’s, 1980, 1989): a Calculus of Communicating Systems (CCS)
similar in manyways to CSP, but
also connected to automata and to the λ-calculus.

Distributed systems became wide-spread after 1990 or so
m.p. the obvious programming technique

▶ packages such as MPI (Message passing interface)
K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 6 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Logic and semantics of CCS

Neither CSP nor CCS are part of the exam; they are included here for
general background.
Transition diagrams are not restricted to concurrency. They could be
non-deterministic systems resulting from any kind of program or circuit.
Model checking applied to these developed almost as independent field
since the late 1980’s.
The pictures we draw later are inspired by CCS and CSP. Communicating
transition systems.
CCS showed not only that communication is central but also worked out a
theory of communication behaviour of a process (all we can observe from
the outside).
More Turing awards in Concurrency: Milner, Pnueli, Lamport, Gray, Clarke
et al . . .

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 7 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Message passing via channels
In Erlang, messages on a channel

are all received by a unique process
▶ one sends a message to a process identifier (Pid)
▶ the channel has no name (or separate identity)

but can be sent from any processes
▶ the channel has infinite capacity, so the sender never waits

⋆ sending is asynchronous

Promela channels are more general. A channel
has a name, say a, so

▶ any process can send a message m on a,
▶ any process can receive a message from a.

can have 0 or any other finite capacity. As with producer/consumer,
▶ a sender has to wait if the channel is full
▶ a receiver has to wait if the channel is empty

Only Erlang is exam material, not Promela.
But Promela and our informal notation below can help understand.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 8 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Semaphore and mutex using synchronous m.p.
The names of the channels s, w areswapped from the usual ones.
Unfortunate old error, but illustrates the symmetry!

Sem Sem’

w?

s?
U-NCS U’-CS

w!

s!

Put the two in parallel, and we get

Sem|U Sem’|U’

Why no labels on the arrows now? S and U spoke to each other. We don’t
get to eavesdrop. But Sem can be reached by other users? We need more
careful notation to say all that.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 9 / 10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Copyright

© 2019 K. V. S. Prasad
Except where otherwise noted, this work is licensed under the Creative

Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 8: Introduction to Message Passing (m.p.) Monday 10 Feb 20 10 / 10

http://creativecommons.org/licenses/by-sa/4.0/

