

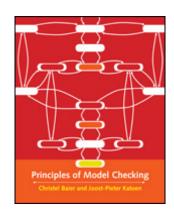
Lecture 3 Linear Temporal Logic (LTL)

Richard M. Murray
Nok Wongpiromsarn Ufuk Topcu
California Institute of Technology

AFRL, 24 April 2012

Outline

- Syntax and semantics of LTL
- Specifying properties in LTL
- Equivalence of LTL formulas
- Fairness in LTL
- Other temporal logics (if time)



Principles of Model Checking, Christel Baier and Joost-Pieter Katoen. MIT Press, 2008.

Chapter 5

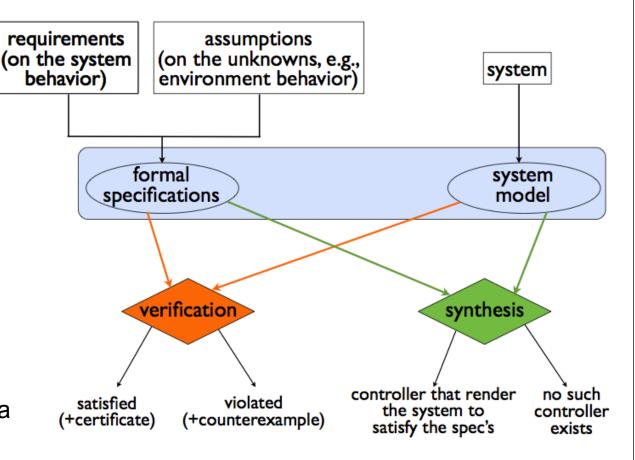
Formal Methods for System Verification

Specification using LTL

- Linear temporal logic (LTL) is a math'l language for describing linear-time prop's
- Provides a particularly useful set of operators for constructing LT properties without specifying sets

Methods for verifying an LTL specification

 Theorem proving: use formal logical manipulations to show that a property is satisfied for a given system model



- Model checking: explicitly check all possible executions of a system model and verify that each of them satisfies the formal specification
 - Roughly like trying to prove stability by simulating every initial condition
 - Works because discrete transition systems have finite number of states
 - Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)

Temporal Logic Operators

Two key operators in temporal logic

- \(\rightarrow \) "eventually" a property is satisfied at some point in the future
- "always" a property is satisfied now and forever into the future

"Temporal" refers underlying nature of time

- *Linear* temporal logic ⇒ each moment in time has a well-defined successor moment
- Branching temporal logic ⇒ reason about multiple possible time courses
- "Temporal" here refers to "ordered events"; no explicit notion of time

LTL = linear temporal logic

- Specific class of operators for specifying linear time properties
- Introduced by Pneuli in the 1970s (recently passed away)
- Large collection of tools for specification, design, analysis

Other temporal logics

- CTL = computation tree logic (branching time; will see later, if time)
- TCTL = timed CTL check to make sure certain events occur in a certain time
- TLA = temporal logic of actions (Lamport) [variant of LTL]
- μ calculus = for reactive systems; add "least fixed point" operator (more tomorrow)

Syntax of LTL

LTL formulas:

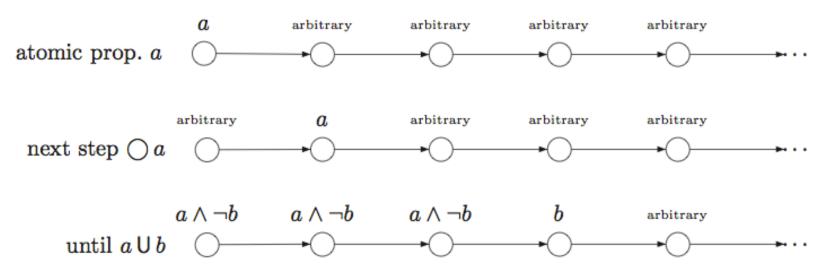
$$arphi ::= \mathrm{true} \, igg| \, a \, igg| \, arphi_1 \wedge arphi_2 \, igg| \,
eg arphi \, igg| \,
eg arphi \, igg| \,
eg arphi_1 \, \mathsf{U} \, arphi_2$$

- a = atomic proposition
- () = "next": φ is true at next step
- U = "until": φ₂ is true at some point,
 φ₁ is true until that time

Operator precedence

- Unary bind stronger than binary
- U takes precedence over ∧, ∨ and →

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

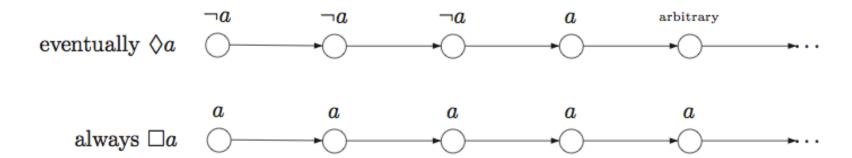


• Same notation as linear time properties: $\sigma \models \phi$ (path "satisfies" specification)

Additional Operators and Formulas

"Primary" temporal logic operators

- Eventually ◊φ := true U φ φ will become true at some point in the future
- Always □φ := ¬◊¬φ φ is always true; "(never (eventually (¬φ)))"



Some common composite operators

- $p \rightarrow \Diamond q$ p implies eventually q (response)
- $p \rightarrow q U r$ p implies q until r (precedence)
- □◊p always eventually p (progress)
- ◆□p eventually always p (stability)
- $\Diamond p \rightarrow \Diamond q$ eventually p implies eventually q (correlation)

Operator precedence

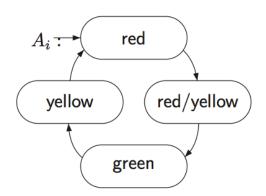
- Unary binds stronger than binary
- Bind from right to left:
 □◊p = (□ (◊p))
 p U q U r = p U (q U r)
- U takes precedence over
 ∧, ∨ and →

Example: Traffic Light

System description

- Focus on lights in on particular direction
- Light can be any of three colors: green, yellow, read
- Atomic propositions = light color

- Liveness: "traffic light is green infinitely often"
 - □◊green



- Chronological ordering: "once red, the light cannot become green immediately"
 - \square (red $\rightarrow \neg \bigcirc$ green)
- More detailed: "once red, the light always becomes green eventually after being yellow for some time"
 - \Box (red \rightarrow (\Diamond green \land (\neg green U yellow)))
 - \Box (red \rightarrow \bigcirc (red U (yellow \land \bigcirc (yellow U green))))

Progress property

- Every request will eventually lead to a response
 - \Box (request \rightarrow \(\phi response)

Semantics: when does a path satisfy an LTL spec?

Definition 5.6. Semantics of LTL (Interpretation over Words)

Let φ be an LTL formula over AP. The LT property induced by φ is

$$Words(\varphi) = \left\{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \right\}$$

where the satisfaction relation $\models \subseteq (2^{AP})^{\omega} \times LTL$ is the smallest relation with the properties in Figure 5.2.

Figure 5.2: LTL semantics (satisfaction relation \models) for infinite words over 2^{AP} .

Semantics of LTL

The semantics of the combinations of \square and \lozenge can now be derived:

$$\sigma \models \Box \Diamond \varphi \text{ iff } \stackrel{\infty}{\exists} j. \ \sigma[j \dots] \models \varphi$$
$$\sigma \models \Diamond \Box \varphi \text{ iff } \stackrel{\infty}{\forall} j. \ \sigma[j \dots] \models \varphi.$$

Here, $\stackrel{\infty}{\exists} j$ means $\forall i \geq 0$. $\exists j \geq i$, "for infinitely many $j \in \mathbb{N}$ ", while $\stackrel{\infty}{\forall} j$ stands for $\exists i \geq 0$. $\forall j \geq i$, "for almost all $j \in \mathbb{N}$ ".

Definition 5.7. Semantics of LTL over Paths and States

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP.

For infinite path fragment π of TS, the satisfaction relation is defined by

$$\pi \models \varphi$$
 iff $trace(\pi) \models \varphi$.

• For state $s \in S$, the satisfaction relation \models is defined by

$$s \models \varphi$$
 iff $(\forall \pi \in Paths(s). \ \pi \models \varphi).$

TS satisfies φ, denoted TS |= φ, if Traces(TS) ⊆ Words(φ).

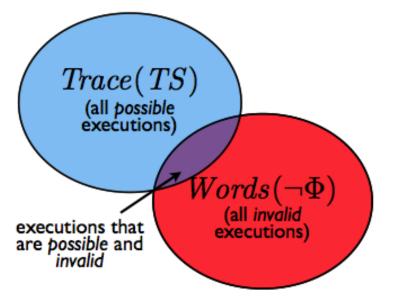
Semantics of LTL

From this definition, it immediately follows that

```
TS \models \varphi iff Traces(TS) \subseteq Words(\varphi) iff TS \models Words(\varphi) iff TS \models Words(\varphi) iff (* \text{ Definition of } \models \text{ for LT properties } *) \pi \models \varphi \text{ for all } \pi \in Paths(TS) iff (* \text{ Definition of } Words(\varphi) *) \pi \models \varphi \text{ for all } s_0 \in I. (* Definition 5.7 of \models \text{ for states } *) s_0 \models \varphi \text{ for all } s_0 \in I.
```

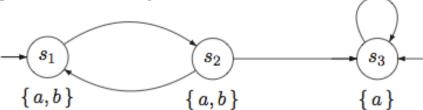
Remarks

- Which condition you use depends on type of problem under consideration
- For reasoning about correctness, look for (lack of) intersection between sets:



"Quiz"

Consider the following transition system



Consider the transition system TS depicted in Figure 5.3 with the set of propositions $AP = \{a, b\}$. For example, we have that $TS \models \Box a$, since all states are labeled with a, and hence, all traces of TS are words of the form $A_0 A_1 A_2 ...$ with $a \in A_i$ for all $i \ge 0$. Thus, $s_i \models \Box a$ for i = 1, 2, 3. Moreover:

 $s_1 \models \bigcirc (a \land b)$ since $s_2 \models a \land b$ and s_2 is the only successor of s_1 $s_2 \not\models \bigcirc (a \land b)$ and $s_3 \not\models \bigcirc (a \land b)$ as $s_3 \in Post(s_2), s_3 \in Post(s_3)$ and $s_3 \not\models a \land b$.

This yields $TS \not\models \bigcirc (a \land b)$ as s_3 is an initial state for which $s_3 \not\models \bigcirc (a \land b)$. As another example:

$$TS \models \Box(\neg b \rightarrow \Box(a \land \neg b)),$$

since s_3 is the only $\neg b$ state, s_3 cannot be left anymore, and $a \land \neg b$ in s_3 is true. However,

$$TS \not\models b \cup (a \wedge \neg b),$$

since the initial path $(s_1s_2)^{\omega}$ does not visit a state for which $a \wedge \neg b$ holds. Note that the initial path $(s_1s_2)^*s_3^{\omega}$ satisfies $b \cup (a \wedge \neg b)$.

Specifying Timed Properties for Synchronous Systems

For *synchronous* systems, LTL can be used as a formalism to specify "real-time" properties that refer to a discrete time scale. Recall that in synchronous systems, the involved processes proceed in a lock step fashion, i.e., at each discrete time instance each process performs a (sometimes idle) step. In this kind of system, the next-step operator \bigcirc has a "timed" interpretation: $\bigcirc \varphi$ states that "at the next time instant φ holds". By putting applications of \bigcirc in sequence, we obtain, e.g.:

$$\bigcirc^k \varphi \stackrel{\text{def}}{=} \underbrace{\bigcirc \bigcirc \ldots \bigcirc}_{k\text{-times}} \varphi \qquad \text{``φ holds after (exactly) k time instants"}.$$

Assertions like " φ will hold within at most k time instants" are obtained by

$$\Diamond^{\leqslant k} \varphi = \bigvee_{0 \leqslant i \leqslant k} \bigcirc^i \varphi.$$

Statements like " φ holds now and will hold during the next k instants" can be represented as follows:

$$\square^{\leqslant k} \varphi \ = \ \neg \lozenge^{\leqslant k} \neg \varphi \ = \ \neg \bigvee_{0 \leqslant i \leqslant k} \bigcirc^i \neg \varphi.$$

Remark

Idea can be extended to non-synchronous case (eg, Timed CTL [later])

Equivalence of LTL Formulas

Definition 5.17. Equivalence of LTL Formulae

LTL formulae φ_1, φ_2 are equivalent, denoted $\varphi_1 \equiv \varphi_2$, if $Words(\varphi_1) = Words(\varphi_2)$.

duality law	idempotency law	
$\neg \bigcirc \varphi \equiv \bigcirc \neg \varphi$	$\Diamond\Diamond\varphi \equiv \Diamond\varphi$	
$\neg \Diamond \varphi \equiv \Box \neg \varphi$	$\Box \Box \varphi \ \equiv \ \Box \varphi$	
$\neg\Box\varphi \equiv \Diamond\neg\varphi$	$\varphi U (\varphi U \psi) \equiv \varphi U \psi$	
	$(\varphi \cup \psi) \cup \psi \equiv \varphi \cup \psi$	
absorption law	expansion law	
$\Diamond \Box \Diamond \varphi \equiv \Box \Diamond \varphi$	$\varphi \cup \psi \equiv \psi \lor (\varphi \land \bigcirc (\varphi \cup \psi))$	
$\Box \Diamond \Box \varphi \equiv \Diamond \Box \varphi$	$\Diamond \psi \equiv \psi \lor \bigcirc \Diamond \psi$	
	$\Box \psi \equiv \psi \land \bigcirc \Box \psi$	
distributive law Non-identities		
$\bigcirc (\varphi \cup \psi) \equiv (\bigcirc \varphi) \cup (\bigcirc \psi) \qquad \bullet \Diamond (a \land b) \neq \Diamond a \land \Diamond b$		
$\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor$	' ◊ ψ • □(a ∨ b) ≠ □a ∨ □b	
$\Box(\varphi \wedge \psi) \equiv \Box \varphi \wedge \Box \psi$		

LTL Specs for Control Protocols: RoboFlag Drill

Task description

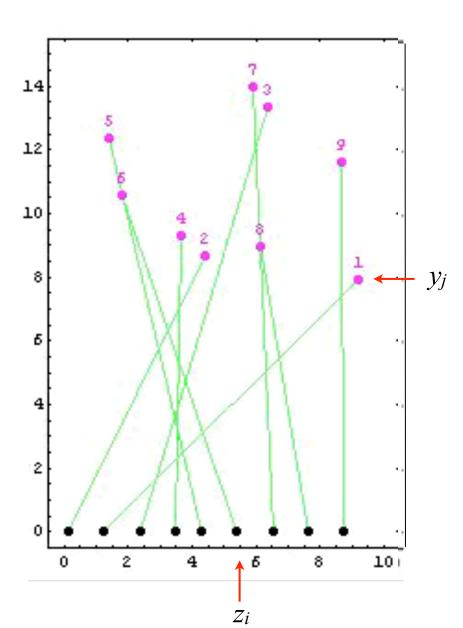
- Incoming robots should be blocked by defending robots
- Incoming robots are assigned randomly to whoever is free
- Defending robots must move to block, but cannot run into or cross over others
- Allow robots to communicate with left and right neighbors and switch assignments

Goals

- Would like a provably correct, distributed protocol for solving this problem
- Should (eventually) allow for lost data, incomplete information

Questions

- How do we describe task in terms of LTL?
- Given a protocol, how do we prove specs?
- How do we design the protocol given specs?



Properties for RoboFlag program

CCL formulas (will cover in more detail later)

evaluate q at the next action in path

• p \rightarrow q \Box (p \rightarrow \Diamond q) "p leads to q": if p is true, q will eventually be true

• p **co** q " \Box (p $\rightarrow \circ$ q)" if p is true, then next time state changes, q will be true

Safety (Defenders do not collide)

$$z_i < z_{i+1}$$
 co $z_i < z_{i+1}$

Stability (switch predicate stays false)

True if robots i and i +1 have targets that cause crossed paths

Robots are "far enough" apart.

"Lyapunov" stability

- Remains to show that we actually approach the goal (robots line up with targets)
- Will see later we can do this using a Lyapunov function

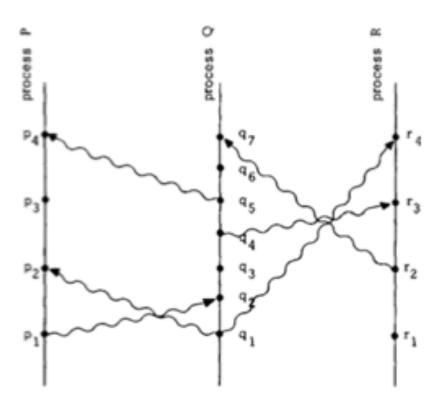
Fairness

Mainly an issue with concurrent processes

- To make sure that the proper interaction occurs, often need to know that each process gets executed reasonably often
- Multi-threaded version: each thread should receive some fraction of processes time

Two issues: implementation and specification

- Q1: How do we implement our algorithms to insure that we get "fairness" in execution
- Q2: how do we model fairness in a formal way to reason about program correctness



Example: Fairness in RoboFlag Drill

 To show that algorithm behaves properly, need to know that each agent communicates with neighbors regularly (infinitely often), in each direction

Difficulty in describing fairness depends on the logical formalism

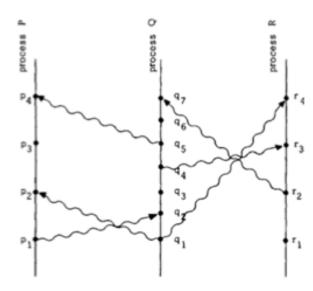
- Turns out to be pretty easy to describe fairness in linear temporal logic
- Much more difficult to describe fairness for other temporal logics (eg, CTL & variants)

Fairness Properties in LTL

Definition 5.25 LTL Fairness Constraints and Assumptions

Let Φ and Ψ be propositional logical formulas over a set of atomic propositions

- 1. An unconditional LTL fairness constraint is an LTL formula of the form $ufair = \Box \Diamond \Psi$.
- 2. A strong LTL fairness condition is an LTL formula of the form $sfair = \Box \Diamond \Phi \longrightarrow \Box \Diamond \Psi$.
- 3. A weak LTL fairness constraint is an LTL formula of the form $wfair = \Diamond \Box \Phi \longrightarrow \Box \Diamond \Psi$.



An *LTL fairness assumption* is a conjunction of LTL fairness constraints (of any arbitrary type).

$$fair = ufair \wedge sfair \wedge wfair.$$

Rules of thumb

- strong (or unconditional) fairness: useful for solving contentions
- weak fairness: sufficient for resolving the non-determinism due to interleaving.

Fairness Properties in LTL

Fair paths and traces

$$FairPaths(s) = \{ \pi \in Paths(s) \mid \pi \models fair \},$$

 $FairTraces(s) = \{ trace(\pi) \mid \pi \in FairPaths(s) \}.$

Definition 5.26. Satisfaction Relation for LTL with Fairness

For state s in transition system TS (over AP) without terminal states, LTL formula φ , and LTL fairness assumption fair let

$$s \models_{fair} \varphi \text{ iff } \forall \pi \in FairPaths(s). \pi \models \varphi \text{ and } TS \models_{fair} \varphi \text{ iff } \forall s_0 \in I. s_0 \models_{fair} \varphi.$$

Theorem 5.30. Reduction of \models_{fair} to \models

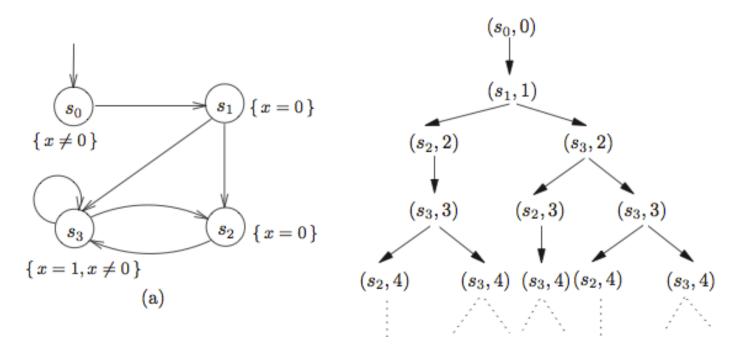
For transition system TS without terminal states, LTL formula φ , and LTL fairness assumption fair:

$$TS \models_{fair} \varphi$$
 if and only if $TS \models (fair \rightarrow \varphi)$.

Branching Time and Computational Tree Logic

Consider transition systems with multiple branches

- Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)
- In this case, there might be *multiple* paths from a given state
- Q: in evaluating a temporal logic property, which execution branch to we check?



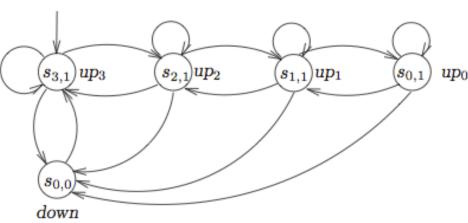
Computational tree logic: allow evaluation over some or all paths

$$s \models \exists \varphi$$
 iff $\pi \models \varphi$ for some $\pi \in Paths(s)$
 $s \models \forall \varphi$ iff $\pi \models \varphi$ for all $\pi \in Paths(s)$

Example: Triply Redundant Control Systems

Systems consists of three processors and a single voter

- si,j = i processors up, j voters up
- Assume processors fail one at a time; voter can fail at any time
- If voter fails, reset to fully functioning state (all three processors up)
- System is operation if at least 2 processors remain operational



Properties we might like to prove

Property	Formalization in CTL	
Possibly the system never goes down	$\exists \Box \neg down$	Holds
Invariantly the system never goes down	$\forall \Box \neg down$	Doesn't hold
It is always possible to start as new	$\forall \Box \exists \Diamond up_3$	Holds
The system always eventually goes down and is operational until going down	$\forall ((\mathit{up}_3 \ \lor \ \mathit{up}_2) U \mathit{down})$	Doesn't hold

Other Types of Temporal Logic

CTL ≠ LTL

- Can show that I TI and CTL are not proper subsets of each other
- LTL reasons over a complete path; CTL from a give state

Aspect	Linear time	Branching time
"behavior" in a state s	path-based: $trace(s)$	state-based: computation tree of s
temporal logic	LTL: path formulae φ $s \models \varphi \text{iff}$ $\forall \pi \in Paths(s). \ \pi \models \varphi$	CTL: state formulae existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$

CTL* captures both

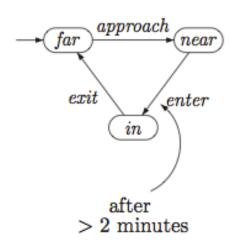
$$\Phi ::= \operatorname{true} \left| egin{array}{c|c} a & \Phi_1 \wedge \Phi_2 & \lnot \Phi & \exists arphi \end{array}
ight.$$

$$\Phi ::= \mathrm{true} \hspace{0.5em} \left| \hspace{0.5em} a \hspace{0.5em} \right| \hspace{0.5em} \Phi_{1} \wedge \Phi_{2} \hspace{0.5em} \left| \hspace{0.5em} \neg \Phi \hspace{0.5em} \right| \hspace{0.5em} \exists \varphi \hspace{0.5em} \varphi ::= \Phi \hspace{0.5em} \left| \hspace{0.5em} \varphi_{1} \wedge \varphi_{2} \hspace{0.5em} \right| \hspace{0.5em} \neg \varphi \hspace{0.5em} \left| \hspace{0.5em} \bigcirc \varphi \hspace{0.5em} \right| \hspace{0.5em} \varphi_{1} \, \mathsf{U} \, \varphi_{2}$$

Timed Computational Tree Logic

- Extend notions of transition systems and CTL to include "clocks" (multiple clocks OK)
- Transitions can depend on the value of clocks
- Can require that certain properties happen within a given time window

$$\forall \Box (far \longrightarrow \forall \lozenge^{\leqslant 1} \forall \Box^{\leqslant 1} up)$$



Summary: Specifying Behavior with LTL

Description

- State of the system is a snapshot of values of all variables
- Reason about paths σ: sequence of states of the system
- No strict notion of time, just ordering of events
- Actions are relations between states: state s is related to state t by action a if a takes s to t (via prime notation: x' = x + 1)
- Formulas (specifications) describe the set of allowable behaviors
- Safety specification: what actions are allowed
- Fairness specification: when can a component take an action (eg, infinitely often)

Example

- Action: $a \equiv x' = x + 1$
- Behavior: $\sigma \equiv x := 1, x := 2, x := 3, ...$
- Safety: $\Box x > 0$ (true for this behavior)
- Fairness: $\square(x' = x + 1 \lor x' = x) \land \square \lozenge (x' \neq x)$

- $\Box p =$ always p (invariance)
- $\Diamond p =$ eventually p (guarantee)
- $p \rightarrow \Diamond q = p$ implies eventually q (response)
- $p \rightarrow q \ \mathcal{U} \ r = p \ \text{implies} \ q \ \text{until} \ r$ (precedence)
- □◊p = always eventually p
 (progress)
- ♦□p = eventually always p (stability)
- $\Diamond p \rightarrow \Diamond q =$ eventually p implies eventually q (correlation)

Properties

- Can reason about time by adding "time variables" (t' = t + 1)
- Specifications and proofs can be difficult to interpret by hand, but computer tools existing (eg, TLC, Isabelle, PVS, SPIN, etc)