Lecture 3: Scenarios, races, locks, semaphores

© K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

22 January 2020

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 1/26

Counting sequentially to two

First, pseudo-code showing how to sequentially increment a counter twice.
(Java would also need boilerplate code to declare classes, instances, etc. In
other languages, the code below might be closer to the actual code).

Listing 1: Sequential counter: increment twice

1|int counter=0; //global variable
2|void increment() { //global procedure
3 int cnt = counter;

4 counter = cnt + 1;

5/}

6| increment();

7| increment();

The value of counter at the end is 2, every time that code snippet runs.

@ Are there set-ups in which to check such statements by computer?

@ Yes. One such is to use scenarios.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 2/26

Scenario = list of commands and state before each runs

1|int counter=0; //global variable
2|void increment() { //global procedure
3 int cnt = counter;

4 counter = ¢cnt + 1;

5}

6| increment();

7| increment();

local state (cnt) | global state (counter)

none 0
L (=undefined)

©
(e}

AW NGO A~WOO
o

o1
—

i
1
2
3
4
5
6
7
8
9

>
(]
=}
[¢]
NNNR R PR R OO

done none

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 3/26

Adding concurrency

Now, we revisit the example by introducing concurrency:
Suppose the two calls to method increment can be executed concurrently.

(In Java, this is done using threads. The details will be in the tutorial on
concurrency in Java. Here, understand the concurrency via pseudo-code).

The idea is that:

@ There are two independent processes (execution units), ¢ and u

@ We do not know the order of execution of the commands of t and u; a
scheduler beyond our control interleaves these commands as it wishes

@ The variable counter is shared between t and u

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 4/26

Incrementing concurrently - one abbreviated scenario

1| void increment() { //global procedure
2 int cnt = counter;
3 counter = cnt + 1;
4|}
int counter=0 shared variable
process t process u
increment(); increment();
pc | local state cnt; | local state cnt, | global state counter
1|12 1 1L 0
2| u2 0 1 0
3| u3 0 0 0
4| t3 0 0 1
5idone none none 1

We've skipped t4, u4 and the calls to increment.
The sequence t2, t3, u2, u3 will produce counter=2.
Non-deterministic interleaving!. Are other values possible?

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 5/26

Reasons for using concurrency

WHY do we need concurrent programming in the first place?
@ abstraction: separate naturally different tasks, never mind when to
execute them (E.g., individuals in epidemic simulation)
@ responsiveness: be responsive to user, executing different tasks
independently (e.g., browse one page while another loads)

A separate matter is to speed things up, performance.

@ We look at this in the multi-core part of the course (Lab 3).

@ split a complex task into subtasks, and assign each its own processor
(e.g., compute all prime numbers up to 1 billion)

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 6/26

Concurrency vs. parallelism

Principles of concurrent programming

VS.

Principer for parallell programmering
The Swedish parallell covers both concurrent and parallel.

OK, so how do concurrent and parallel differ?

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 7/26

Concurrency vs. parallelism

@ You can have concurrency without physical parallelism: operating
systems running on single-processor single-core systems.

@ Parallelism is mainly about speeding up computations by taking
advantage of multiple processing units (read cards and print lines).

concurrency: nondeterministic composition of independently executing
units (potentially physically parallel).
@ There may be more or fewer processes than processors.
@ The program is designed to meet any scheduling.

parallelism: (physical parallelism) on multiple processing units.

@ There may be more or fewer processes than processors.
@ The program aims is designed for speed-up.
@ Synchronisation as in concurrent programming is useful
to avoid working entirely by timimg.
» As in the old unit record example, CDR, CPU and LPT

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore: 22 January 2020 8/26

A few frames from the Carlo/Sandro Lecture 01, frame 22 - 60 (including
many overlays) if you wish to see the same things look in Java.

Suggestion: Look at the process states, and do the rest off-line.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 9/26

Race conditions

Concurrent programs are nondeterministic:
@ executing multiple times the same concurrent program with the same
inputs may lead to different execution traces

@ this is a result of the nondeterministic interleaving of each thread's
trace to determine the overall program trace

@ in turn, the interleaving is a result of the scheduler's decisions

A race condition is a situation where the correctness of a concurrent
program depends on the specific execution

The concurrent counter example has a race condition:
@ in some executions the final value of counter is 2 (correct),

@ in some executions the final value of counteris 1 (wrong).

Race conditions can greatly complicate debugging!

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 10 /26

Data races vs. race conditions

A data race occurs when two concurrent threads
@ access a shared memory location,
@ at least one access is a write,

@ the threads use no explicit synchronisation mechanism to protect the
shared data.

Not every race is a data race Not every data race is a race
@ race conditions can occur even e the data race might not affect
without shared memory access the result
> file systems, network access. > e.g., if two threads write the
These are shared resources, same value to shared memory
but part of the underlying OS
support.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 11/26

The mutual exclusion problem

The mutual exclusion problem is a fundamental synchronization problem.
@ Arises whenever multiple threads share access to a common resource.

e critical section (CS): the part of a program that accesses the shared
resource (typically, a shared variable)

e mutual exclusion property: at most one thread is in its CS at any
given time

The mutual exclusion problem: devise a protocol, satisfying the mutual
exclusion property, for accessing a shared resource.

@ Updating a shared variable consistently is an instance.

The phrase "mutual exclusion” is abbreviated mutex.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 12 /26

The mutex problem - simplifications

Simplifications to present solutions in a uniform way:

@ the critical section is an arbitrary block of code
o threads continuously try to enter the critical section

» Typically, endless loop of non-critical (NCS) and critical section (CS)
@ threads spend a finite amount of time in the critical section

» Cannot die or loop in a CS

@ we ignore what the threads do outside their their critical sections
» Can die or loop in NCS

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 13 /26

Mutex - classic schematic program

Reminder:
@ mutex property: at most one thread is in its CS at any given time

@ mutex problem: devise a protocol to access a shared resource, while
satisfying the mutex property.

shared variables
process t process u
while true { while true {
NCS; NCS;
entry protocol; entry protocol;
CS; CS;
exit protocol; exit protocol;
I }

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 14 /26

What's a good solution to the mutual exclusion problem?

A fully satisfactory solution is one that achieves three properties:

© Mutual exclusion: at most one thread is in its CS at any given time

@ Freedom from deadlock: if one or more threads try to enter their
respective CS’s, some thread will eventually succeed

© Freedom from starvation: every thread that tries to enter its CS will
eventually succeed

(Note that freedom from starvation implies freedom from deadlock.)

A good solution should also work for an arbitrary number of threads
sharing the same memory.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 15 /26

Deadlocks

Under the following conditions:
@ A mutex protocol provides exclusive access to shared resources to one
thread at a time.
@ Threads that try to access the resource when it is not available will
have to block and wait.
Mutually dependent waiting conditions may arise, causing a situation
called a deadlock.

A deadlock is the situation where a group of threads wait forever because
each of them is waiting for resources that are held by another thread in
the group (circular waiting)

Note that this makes sense only when we have processes (abstractions
supported by a run-time system) with blocked and ready states.

At a lower abstraction level, "hardware processes" are sometimes
informally said to "deadlock". Each is looping until something happens,

and that will never happen. It is better to call such situations /ivelock.
@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 16 / 26

Deadlock: examples

@ Two polite people waiting either side of a narrow doorway: "you first,
you first".
» Each is waiting for the other to go through the doorway.
* The scheduler marks both blocked.
* The run-time support will wake up a person when the event "other
person walks through door" happens. — But that will never happen.
@ What happens if two greedy people wait either side of a narrow
doorway going "me first, me first"?
» They cause a livelock, not visible to the run-time system.
» They both remain ready and keep getting scheduled, but get nowhere.

@ You and | share a pencil and writing pad. | grab the pencil and wait
for the pad, you do the opposite.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 17 /26

The dining philosophers

The dining philosophers is a classic synchronization problem introduced by

Dijkstra. It illustrates the problem of deadlocks using a colorful metaphor
(by Hoare).

o Five philosophers are sitting around a dinner table, with a fork in
between each pair of adjacent philosophers.

@ Each philosopher alternates between thinking (non-critical section)
and eating (critical section).

@ In order to eat, a philosopher needs to pick up the two forks that lie
to the philopher’s left and right.

@ Since the forks are shared, there is a synchronization problem between
philosophers (threads).

Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 18 /26

Deadlocking philosophers

An unsuccessful attempt at solving the dining philosophers problem:

the shared forks
process pli
while true {
think;
pick up left fork, then right fork;
eat;
put down left fork, then right fork;

}

This protocol deadlocks if all philosophers get their left forks, and wait
forever for their right forks to become available.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore

22 January 2020 19 /26

The Coffman conditions

Necessary conditions for a deadlock to occur:
@ Mutual exclusion: threads may have exclusive access to the shared
resources.

@ Hold and wait: a thread that may request one resource while holding
another resource.

© No preemption: resources cannot forcibly be released from threads
that hold them.

@ Circular wait: two or more threads form a circular chain where each
thread waits for a resource that the next thread in the chain is
holding.

Avoiding deadlocks requires to break one or more of these conditions.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 20/26

Breaking a circular wait

A solution to the dining philosophers problem that avoids deadlock by
avoiding a circular wait. everyone follows the previous deadlocking
protocol except the 5th philosopher, who picks up their right for first.

Ordering shared resources and forcing all threads to acquire the resources

in order is a common measure to avoid deadlocks. So always grab pen
first, then pad.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 21/26

Atomic philosophers

A solution to the dining philosophers problem that avoids deadlock by
breaking hold and wait (and thus circular wait): pick up both forks at once
(atomic operation).

This protocol avoids deadlocks, but it may introduce starvation: a
philosopher may never get a chance to pick up the forks.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore

22 January 2020 22/26

Starvation

No deadlocks means that the system makes progress as a whole.
However, some individual thread may still make no progress because it is
treated unfairly in terms of access to shared resources.

Starvation is the situation where a thread is
perpetually denied access to a resource it requests.

Avoiding starvation requires an additional assumption about the scheduler.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 23/26

Fairness

Starvation is the situation where a thread is perpetually denied access to a
resource it requests.

Avoiding starvation requires the scheduler to

“give every thread a chance to execute”.

Weak fairness: if a thread continuously requests (that is, requests without

interruptions) access to a resource, then access is granted
eventually (or infinitely often).

Strong fairness: if a thread requests access to a resource infinitely often,
then access is granted eventually (or infinitely often).

Applied to a scheduler:
@ request = a thread is ready (enabled)

o fairness = every thread has a chance to execute

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore

22 January 2020 24 /26

Tools: model checkers

The model checker SPIN

@ Checks Promela programs. It checks assertions and more general LTL
formulas, showing where they fail to hold.

» A single state is needed to disprove a safety property. You said "this
bad thing won't happen". Well, here is where it does, and a path to
get there.

> A loop of states is needed to disprove a liveness property. You said
"this good thing will eventually happen". Well, here is a loop where |
can get stuck and where the good thing never happens.

@© K. V. S. Prasad (TDA384/DIT391 PrincijLecture 3: Scenarios, races, locks, semaphore 22 January 2020 25/26

Finish with Carlo/Sandro Lecture 2, frame 25 (Locks) onwards.

K. V. S. Prasad (TDA384/DIT391 Princi|Lecture 3: Scenarios, races, locks, semaphore!

	Races

