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Linda Basics
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Linda Technology Overview

❍ Six simple commands enabling existing programs to run 
in parallel

❍ Complements any standard programming language to 
build upon user’s investments in software and training

❍ Yields portable programs which run in parallel on 
different platforms, even across networks of machine 
from different vendors
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What’s in Tuple Space

❍ A Tuple is a sequence of typed fields:

(“Linda is powerful”, 2, 32.5, 62)

(1,2, “Linda is efficient”, a:20)

(“Linda is easy to learn”, i, f(i))
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Tuple Space provides

❍ Process creation

❍ Synchronization

❍ Data communication
These capabilities are provided in a way that is 

logically independent of language or machine
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Operations on the tuple space

❍ Generation
eval

out

❍ Extraction
in

inp

rd

rdp
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Linda Operations:  Generation

❍ out
Converts its arguments into a tuple

All fields evaluated by the outing process

❍ eval
Spawns a “live tuple” that evolves into a normal tuple

Each field is evaluated separately

When all fields are evaluated, a tuple is generated
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Linda Operations: Extraction

❍ in
Defines a template for matching against Tuple Space  

Either finds and removes matching tuple or blocks

❍ rd
Same as in but doesn’t remove tuple

❍ inp, rdp
Same as in and rd, but returns false instead of blocking
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Out/Eval

❍ Out evaluates its arguments and creates a tuple:
out("cube", 4, 64);

❍ Eval does the same in a new process:
eval(“cube”, 4, f(i));
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In/Rd

❍ These operations would match the tuples created by the 
out and eval.

In(“cube”, 4, ?j);

rd(“cube”, 4, ?j);

As a side effect, j would be set to 64



Using the Virtual Shared Memory
B: do i = 1, 3

eval( 'table entry', i, f( i))
end do

('table entry', 3, 1.585)

( 'table entry', 1, 0.65)
( 'table entry', 2, 1.005)

D: i = 3
rd('table entry', i, ?fi)

A2: . . .

( 'south', 1, 17, [1. 1.9 0. ... .89])
( 'south', 17, 33, [1. 2. 0. ... .99])

C: imin = 17
jmax = 32
in('south', imin, jmax+1, ?u(2:nxloc+1,nyloc+2))

A: out( 'south', imin, jmin, u(2:nxloc+1,2))
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Tuple/Template matching rules

❍ Same number of fields in tuple and template 

❍ Corresponding field types match

❍ Fields containing data must match
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C Tuple data types

❍ In C, tuple fields may be of any of the following types:
int, long, short, and char, optionally preceded by unsigned.

float and double

struct

union

arrays of the above types of arbitrary dimension

pointers must always be dereferenced in tuples.
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Fortran Tuple types

❍ In Fortran, tuple fields may be of these types
Integer (*1 through *8), Real, Double Precision, 

Logical (*1 through *8), Character, Complex, Complex*16

Synonyms for these standards types (for example, Real*8).

Arrays of these types of arbitrary dimension, including 

multidimensional arrays, and/or portions thereof.

Named common blocks
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Array fields

❍ The format for an array field is name:len

char a[20];

out(“a”, a:);    all 20 elements

out(“a”, a:10);  first 10 elements

in(“a”, ?a:len); stores # recvd in len
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Matching Semantics

❍ Templates matching no tuples will block (except 
inp/rdp)

❍ Templates matching multiple tuples will match 
non-deterministically

❍ Neither Tuples nor Templates match oldest first

❍ These semantics lead to clear algorithms without 
timing dependencies!
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Linda Distributed Data Structures

❍ Linda can be used to build distributed data structures in 
Tuplespace

❍ Easier to think about than “data passing”

❍ Atomicity of Tuple Operations provides data structure 
locking
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Linda Distributed Data Structures (examples)

❍ Counter
in(“counter”, “name”, ?cnt);

out(“counter”, “name”, cnt+1);

❍ Table
for(i=0; i<n; i++)

out(“table”, “name”, elem[i]);
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Linda Distributed Data Structures (examples)

❍ Queue init(){

out(“head”, 0);

out(“tail”, 0);

}

put(elem){

in(“tail”, ?tail);

out(“elem”, tail, elem);

out(“tail”, tail+1);

}

take(elem) {

in(“head”, ?head);

out(“elem”, head, elem);

out(“head”, head+1);

}
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The Linda Programming Environment
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Software Development with Linda

❍ Step 1: Develop and debug sequential modules

❍ Step 2: Use Linda Code Development System and 
TupleScope to develop parallel version 

❍ Step 3: Use parallel Linda system to test and tune 
parallel version
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Linda Code Development System

❍ Implements full Linda system on a single workstation

❍ Provides comfortable development environment

❍ Runs using multitasking, permitting realistic testing

❍ Compatible with TupleScope visual debugger
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Parallel “Hello World”

#define NUM_PROCS 4
real_main(){

int i, hello_world();
out(”count”, 0);
for (i=1; i<=NUM_PROCS; i++)

eval(”worker”, hello_world(i));
in(”count”, NUM_PROCS);
printf(”all processes done.\n”);

}
hello_world(i)
int i;
{

int j;
in(“count”, ?j);
out(“count”, j+1);
printf(“hello world from process %d, count %d\n”, i, j);

}
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Using Linda Code Development System

% setenv LINDA_CLC cds
% clc -o hello hello.cl
CLC (V3.1 CDS version)
hello.cl:10: warning --- no matching Linda op.
% hello
Linda initializing (2000 blocks).
Linda initialization complete.
Hello world from process 3 count 0
Hello world from process 2 count 1
Hello world from process 4 count 2
Hello world from process 1 count 3
All processes done.
all tasks are complete (5 tasks).
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Hands on Session #1 - Hello World

❍ Compile hello.cl using the Code Development System.

❍ Run the program.
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Linda Termination

Linda Programs terminate in three ways:

❍ Normal termination:  when all processes (real_main and 
any evals) have terminated, by returning or calling lexit()

❍ Abnormal termination:  any process ends abnormally

❍ lhalt() termination:  any process may call lhalt()

The system will clean up all processes upon termination.

Do not call exit from within Linda programs!
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TupleScope Visual Debugger

❍ X windows visualization and debugging tool for parallel 
programs

❍ Displays tuple classes, process interaction, program 
code, and tuple data

❍ Contains usual debugger features like single-step of 
Linda operation

❍ Integrated with source debuggers such as dbx, gdb.
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Linda TupleScope
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Debugging with the Linda
Code Development System

Compile program for TupleScope and dbx:

clc -g -o hello -linda tuple_scope hello.cl

Run program, single stepping until desired process is evaled

Middle click on process icon

Set breakpoint in native debugger window

Turn off TupleScope single stepping

Control process via native debugger
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TCP Linda

❍ TCP Linda programs are started via ntsnet utility

❍ Ntsnet will:
Read tsnet.config configuration file

Determine network status

Schedule nodes for execution

Translate directory paths

Copy executables

Start Linda process on selected remote machines

Monitor execution

Etc, etc.
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Running a program with ntsnet

❍ Create file ~/.tsnet.config containing the machine names:
Tsnet.Appl.nodelist: io ganymede rhea electra

❍ Compile the program with TCP Linda
% setenv LINDA_CLC linda_tcp

% clc -o hello hello.cl

❍ Run program with ntsnet
% ntsnet hello
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Hands on Session #2 - Ping Pong

❍ This exercise demonstrates basic Linda operations and 
TupleScope

❍ Write a program that creates to workers called ping() and 
pong().  Ping() loops,  sending a “ping” tuple and 
receiving a “pong”, while pong() does the opposite.

❍ Ping and pong should agree on the length of the game, 
and terminate when finished.

❍ Compile and run the program using Code Development 
System and TupleScope.
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Parallel Programming with Linda
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Parallel Processing Vocabulary

❍ Granularity: ratio of computation to communication

❍ Efficiency: how effectively the resources are used

❍ Speedup: performance increase as CPU’s are added

❍ Load Balance: is work evenly distributed?
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Linda Algorithms

❍ Live Task

❍ Master/Worker

❍ Domain Decomposition

❍ Owner Computes

This is not an exhaustive list:  Linda is general and can 
support most styles of algorithms
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Live Task Algorithms

❍ Simplest Linda Algorithm

❍ Master evals task tuples

❍ Retrieves completed task tuples

❍ Caveats:
simple parameters only

watch out for scheduling problems

think about granularity!
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Live Task Algorithms

Sequential Code

main()
{

/* initialize a[], b[] */
for (i=0; i<LIMIT; i++)
res[i]=comp(a[i], b[i]);

}

Linda Code

real_main()
{

/* initialize a[], b[] */
for (i=0; i<LIMIT; i++)
eval(“task”,i,comp(a[i],b[i]));

for (i=0; i<LIMIT; i++)
in(“task”, i, ?res[i]);

}
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Master/Worker Algorithms

❍ Separate Processes and Tasks
Tasks become lightweight

❍ Master
evals workers

generates task tuples

consumes result tuples

❍ Worker
loops continuously

consumes a task

generates a result
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Dynamic Load Balancing

WORKER

WORKER

WORKER

WORKER

WORKER

WORKER

Task to do
Task in progress
Completed task
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Master/Worker Algorithms: sequential code

main()
{

RESULT r;

TASK t;

while (get_task(&t)) {

r = compute_task(t);
update_result(r);

}

output_result();

}
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Master/Worker Algorithms: parallel code

real_main()
{

int i;

RESULT r;

TASK t;

for (i=0; i<NWORKER; i++)

eval(“worker”, worker());

for (i=0; get_task(&t); i++)

out(“task”, t);

for (; i; --i){

in(“result”, ?r);
update_result(r);

}

output_result();

}

worker()
{

RESULT r;

TASK t;

while (1) {

in(“task”, ?t);

r = compute_task(t);
out(“result”, r);

}

}
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Master/Worker Algorithms:

❍ To be most effective, you need:
Relatively independent tasks

More tasks than workers

May need to order tasks

❍ Benefits:
Easy to code

Near ideal speedups

Automatic load balancing

Lightweight tasks
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Domain Decomposition Algorithms

❍ Specific number of processes in a fixed organization

❍ Relatively fixed, message/passing style of communication

❍ Processes work in lockstep, often time steps



A PDE Example

∂u
∂t

= ∂ 2u
∂x2 + ∂ 2u

∂y2

u(x,y,t +dt)= u(x,y,t)+
dt

dx2 u(x+dx,y,t )+u(x−dx,y,t)−2u(x,y,t){ }+

dt
dy2

u(x,y+dy,t)+u(x,y−dy,t)−2u(x,y,t){ }

MASTER

STEP

WORKER



Master Routine
subroutine real_main
common /parms/ cs, cy, nts

. . . GET INITIAL DATA . . .

out(‘parms common’, /parms/)
np = 0
do ix = 1, nx, nxloc

ixmax = min(ix+nxloc-1, nx)
do iy = 1, ny, nyloc

iymax = min(iy+nyloc-1, ny)
np = np + 1
if (ix.gt.nxloc .or. iy.gt.nyloc) then

eval(‘worker’, worker(ix, ixmax, iy, iymax))
endif
out(‘initial data’, ix, iy, u(ix:ixmax, iy:iymax))

enddo
enddo
call worker(1, min(nxloc,nx), 1, min(nyloc,ny))
do i = 1, np

in(‘result id’, ?ixmin, ?ixmax, ?iymin, ?iymax)
in(‘result’, ixmin, iymin, ?u(ixmin:ixmax, iymin:iymax))

enddo
M
return
end



Worker Routines - I
subroutine worker(ixmin, ixmax, iymin, iymax)
common /parms/ cx, cy, nts
dimension uloc(NXLOCAL+2, NYLOCAL+2, 2)

nxloc = ixmax - ixmin + 1
nyloc = iymax - iymin + 1

rd(‘parms common’, ?/parms/)
in(‘initial data’, ixmin, iymin, ?uloc(2:nxloc+1,2:nyloc+1))

iz = 1
do it = 1, nts

call step(ixmin, ixmax, iymin, iymax, NXLOCAL+2,
*             nxloc, nyloc, iz, uloc(1,1,iz), uloc(1,1,3-iz))

iz = 3 - iz
enddo

out(‘result id’, ixmin, ixmax, iymin, iymax)
out(‘result’, ixmin, iymin, uloc(2:nxloc+1, 2:nyloc+1, iz))

return
end



Worker Routines - II
subroutine step(ixmin, ixmax, iymin, iymax, nrows,
*                nxloc, nyloc, iz, u1, u2)
common /parms/ cx, cy, nts
dimension u1(nrows, *), u2(nrows, *)

if (ixmin.ne.1) out(‘west’, ixmin, iymin, u1(2, 2:nyloc+1))
if (ixmax.ne.nx) out(‘east’, ixmax, iymin, u1(nxloc+1, 2:nyloc+1))
if (iymax.ne.ny) out(‘north’, ixmin, iymax, u1(2:nxloc+1, nyloc+1))
if (iymin.ne.1) out(‘south’, ixmin, iymin, u1(2:nxloc+1, 2))

if (ixmin.ne.1) in(‘east’, ixmin-1, iymin, ?u1(1,2:nyloc+1))
if (ixmax.ne.nx) in(‘west’, ixmax+1, iymin, ?u1(nxloc+2, 2:nyloc+1))
if (iymin.ne.1) in(‘north’, ixmin, iymin-1, ?u1(2:nxloc+1, 1))
if (iymax.ne.ny) in(‘south’, ixmin, iymax+1, ?u1(2:nxloc+1, nyloc+2))

do ix = 2, nxloc + 1
do iy = 2, nyloc + 2

u2(ix,iy) = u1(ix,iy) + 
*                  cx * (u1(ix+1,iy) + u1(ix-1,iy) - 2.*u1(ix,iy)) +
*                  cy * (u1(ix,iy+1) + u1(ix,iy-1) - 2.*u1(ix,iy))

enddo
enddo

return
end
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Owner-Computes Algorithm

❍ Share loop iterations among different processors

❍ Iteration allocation can be dynamic

❍ Allows for parallelization with little change to the code

❍ Good for parallelizing complex existing sequential codes
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Owner-Computes: sequential code

main()

{

/* lots of complex initialization */

for (ol=0; ol<loops; ++ol) {

for (i=0; i<n; ++i) {

...

elem[i] = f(...); /* complex calculation */

...

}

/* more complex calculations using elem[]; */

}

/* output results to disk...*/

}



Parallel Owner Computes

real_main() {

out("task", 1);

for (i=1; i<NUMPROCS; ++i) 

eval(old_main(i));

old_main(0);

}

old_main(id)

int id;

{

/* complex init */

for (ol=0; ol<loops; ++ol) {

for (i=0; i<n; ++i) {

if (!check()) continue;

...

elem[i] = f(...); 

...

log_data(i, elem[i]);

}

gatherscatter();

/* more complex calc */

}

/* output results to disk...*/

}

check(){

static int next=0, count=0;

if (next==0) {

in("task", ?next);

out("task", next+1);

}

if (++count == next) {

next=0; return 1;

}

return 0;

}

log_data(i, val){

local_results[i].id = i;

local_results[i].val = val;

}

gatherscatter(){ 

if (myid==0)

/* master ins local results */

/* master outs all results */

else

/* worker outs local results */

/* worker ins all results */

}
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Hands on Session #3 - Live Task PI

❍ Convert sequential C program to parallel using live task 
method.

❍ PI is the integral of 4/(1+x*x) from 0 to 1.



Hands on Session #3 - Sequential Program

main(argc, argv)

int argc;

char *argv[];

{

nsteps = atoi(argv[1]);

step   = 1.0/(double)nsteps;     

pi=subrange(nsteps,0.0,step)*step;

}

double subrange(nsteps,x,step)

{

double result = 0.0;

while(nsteps>0) {

result += 4.0/(1.0+x*x);

x += step;

nsteps--;

}

return(result);

}
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Linda Implementation
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Linda Implementation Efficiency

❍ Tuple usage analysis and optimization is the key to 
Scientific’s Linda systems

❍ Optimization occurs at compile, link, and runtime

In general

❍ Satisfying an in requires touching fewer than two tuples

❍ On distributed memory architectures, communication 
pattern optimizes to near message-passing 
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Implementation

❍ 3 major components:
Compile Time: Language Front End

supports Linda syntax
supports debugging
supports tuple usage analysis

Link Time: Tuple-usage Analyzer

optimizes run-time tuple storage and handling
Run Time:  Linda Support Library

initializes system
manages resources
provides custom tuple handlers
dynamically reconfigures to optimize handling
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Linda Compile-time Processing

Linda Source Code

Parser

Linda Engine

Native Compiler

Native Source Code

Native Object Code

Linda Object File

Tuple Usage Data
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Linda Link-time Processing

Linda Object Files

Analyzer

Native Compiler

Generated C Source Code

Generated C Object Code

Executable

Other Object Files

Object Code

Linda Library

Loader



Scientific Computing Associates, Inc. Slide 59

Tuple Usage Analysis

❍ Converts Linda operations into more efficient, low level 
operations

❍ Phase I partitions Linda operations into disjoint sets 
based on tuple and template content

❍ Example: 
out (“date”, i, j)

can never match

in(“sem”, ?i)
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Tuple Usage Analysis

❍ Phase II analyzes each partition found in Phase I

❍ Detects patterns of tuple and template usage

❍ Maps each pattern to a conventional data structure

❍ Chooses a runtime support routine for each operation
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Linda Compile-Time Analysis Example

/* Add to order task list */
out(“task”, ++j, task_info) /* S1 */

/* Extend table of squares */
out(“squares”, i, i*i) /* S2 */

/* Consult table */
rd(”squares”, i, ?i2)   /* S3 */

/* Grab task */
in(”task”, ?t, ?ti)  /* S4 */
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Linda Compile-Time Analysis Example

❍ Phase I: two partitions are generated:
P1={S2, S3}    P2={S1, S4}

❍ Phase II: each partition optimized:
P1:

Field 1 can be suppressed
Field 3 is copy only (no matching)
Field 2 must be matched, but key available ⇒hash implementation

P2:
Field 1 can be suppressed
Fields 2 & 3 are copy only (no matching) ⇒ queue implementation
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Linda Compile-Time Analysis

❍ Associative matching reduced to simple data structure 
lookups

❍ Common set paradigms are:
counting semaphores

queues

hash tables

trees

❍ In practice, exhaustive searching is never needed
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Run Time Library

❍ Contains implementations of set paradigms for tuple 
storage

❍ Structures the tuple space for efficiency

❍ Families of implementations for architecture classes
Shared-memory

Distributed-memory

Put/get memory
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TCP Linda runtime optimizations

❍ Tuple rehashing
Runtime system observes patterns of usage, remaps tuples to better 

locations

Example: Domain decomposition

Example: Result tuples

❍ Long field handling
Large data fields can be stored on outing machine

We know they are not needed for matching

Bulk data transferred only once
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Hints for Aiding the Analysis

Use String Tags
out(“array elem”, i, a[i])

out(“task”, t);

❍ Code is self documenting, more readable

❍ Helps with set partitioning

❍ No runtime cost!
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Hints for Aiding the Analysis

Use care with hash keys

❍ Hash key is non-constant, always actual
out(“array elem”, iter, i, a[i])

in(“array elem”, iter, i, ?val)

❍ Analyzer combines all such fields (fields 2 and 3)

❍ Avoid unnecessary use of formal in hash field (common 
in cleanup code)

in(“array elem”, ?int, ?int, ?float)
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Linda vs. the Competition
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Portable Parallel Programming

Four technology classes for Portable Parallel Programming:

❍ Message Passing - the machine language of parallel computing

❍ Language extensions - incremental build on traditional languages

❍ Inherently Parallel Languages - elegant but steep learning curve

❍ Compiler Tools - the solution to the dusty deck problem?
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Portable Parallel Programming: 
the major players

Four technology classes for Portable Parallel Programming:

❍ Message Passing - MPI, PVM, Java RMI...

❍ Language extensions - Linda, Java Spaces...

❍ Inherently Parallel Languages - ??

❍ Compiler Tools - HPF
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Why not message passing?

❍ Message passing is the machine language of distributed-
memory parallelism
It’s part of the problem, not the solution

❍ Linda’s Mission:
Comparable efficiency with much greater ease of use
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Linda is a high-level approach

❍ Point-to-point communication is trivial in Linda, so you 
can do message passing if you must...

❍ ... but Linda’s shared associate object memory is 
extremely hard to implement in message passing

❍ Message Passing is a low-level approach



Simplicity of Expression
/* Receive data from master */
msgtype = 0;
pvm_recv(-1, msgtype);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);
pvm_upkfloat(data, n, 1);

/* Do calculations with data */
result = work(me, n, data, tids, nproc);

/* Send result to master */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_pkfloat(&result, 1, 1);
msgtype = 5;
master = pvm_parent();
pvm_send(master, msgtype);

/* Program done. Exit PVM and stop */
pvm_exit();

/* Receive data from master */
rd(“init data”, ?nproc, ?n, ?data);

/* Do calculations with data */
result = work(id, n, data, tids, nproc);

/* Send result to master */
out(“result”, id, result);

PVM Linda
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Global counter in Linda vs. Message Passing

❍ Example in “Using MPI”, Gropp, et. al. was more than two 
pages long!

❍ Several reasons:
– MPI cannot easily represent data apart from processes

– Must build a special purpose “counter agent”

– All data marshalling is done by hand (error prone!)

– Must worry about “group issues”

❍ In Linda, counter requires 3 lines of code!
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Why Linda’s Tuple Space is important

Parallel program development is much easier than with 
message passing:

❍ Dynamic tasking

❍ Distributed data structures

❍ Uncoupled programming

❍ Anonymous communication

❍ Dynamically varying process pool
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Hands on session #4: Monte Carlo PI

❍ Pi can be calculated by the 
probability of randomly placed 
points falling within a circle

❍ Use master/worker algorithm to 
parallelize program

r

square

circle

circle

square

a
a

ra
ra

4

4
2

2

=

=
=

π

π
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Poison Pill Termination

❍ Common Linda idiom in 
Master/Worker algorithms

❍ Master creates a special task 
that causes evaled processes 
to terminate.

real_main()
{

for(i=0; i<NWORKERS; i++)
eval(“worker”, worker());

...

/* got all results */

out(“task”, POISON, t);

...

}

worker()
{
...

in(“task”, ?tid, ?t);
if (tid==POISON) {

in(“task”, ?tid, ?t);      
return();

}
...

}
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Hands on session #5: Matrix Multiplication

❍ This exercise develops a Linda application with non-trivial 
communication costs

❍ Write a program that computes C=A*B where A, B, C are 
square matrices

❍ Parallelism can be defined at any of the following levels:
single elements of result matrix C

single rows (or columns) of C

groups of rows (or columns) of C

groups of rows and columns (blocks) of C
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Hands on session #5: Matrix Multiplication

❍ For your algorithm, estimate the ratio of communication 
to computation, assuming that:
Computational speed is 100 Mflops

Communication speed is 1 Mbytes/sec with 1 msec latency (ethernet)

❍ How much faster must the network be?


