
Tutorial on Parallel Programming with Linda

© Copyright 2006. All rights reserved.

Scientific Computing Associates, Inc
265 Church St

New Haven CT 06510
203.777.7442

www.LindaSpaces.com

Scientific Computing Associates, Inc. Slide 2

Linda Tutorial Outline

Linda Basics pg 3

Linda Programming Environment pg 21

Exercise #1 Hello World pg 26

Exercise #2 Ping/Pong pg 33

Parallel Programming with Linda pg 34

Exercise #3 Integral PI pg 52

Linda Implementation pg 54

Linda versus Competition pg 68

Exercise #4 Monte Carlo PI pg 76

Exercise #5 Matrix Multiplication pg 78

Scientific Computing Associates, Inc. Slide 3

Linda Basics

Scientific Computing Associates, Inc. Slide 4

Linda Technology Overview

❍ Six simple commands enabling existing programs to run
in parallel

❍ Complements any standard programming language to
build upon user’s investments in software and training

❍ Yields portable programs which run in parallel on
different platforms, even across networks of machine
from different vendors

Scientific Computing Associates, Inc. Slide 5

What’s in Tuple Space

❍ A Tuple is a sequence of typed fields:

(“Linda is powerful”, 2, 32.5, 62)

(1,2, “Linda is efficient”, a:20)

(“Linda is easy to learn”, i, f(i))

Scientific Computing Associates, Inc. Slide 6

Tuple Space provides

❍ Process creation

❍ Synchronization

❍ Data communication
These capabilities are provided in a way that is

logically independent of language or machine

Scientific Computing Associates, Inc. Slide 7

Operations on the tuple space

❍ Generation
eval

out

❍ Extraction
in

inp

rd

rdp

Scientific Computing Associates, Inc. Slide 8

Linda Operations: Generation

❍ out
Converts its arguments into a tuple

All fields evaluated by the outing process

❍ eval
Spawns a “live tuple” that evolves into a normal tuple

Each field is evaluated separately

When all fields are evaluated, a tuple is generated

Scientific Computing Associates, Inc. Slide 9

Linda Operations: Extraction

❍ in
Defines a template for matching against Tuple Space

Either finds and removes matching tuple or blocks

❍ rd
Same as in but doesn’t remove tuple

❍ inp, rdp
Same as in and rd, but returns false instead of blocking

Scientific Computing Associates, Inc. Slide 10

Out/Eval

❍ Out evaluates its arguments and creates a tuple:
out("cube", 4, 64);

❍ Eval does the same in a new process:
eval(“cube”, 4, f(i));

Scientific Computing Associates, Inc. Slide 11

In/Rd

❍ These operations would match the tuples created by the
out and eval.

In(“cube”, 4, ?j);

rd(“cube”, 4, ?j);

As a side effect, j would be set to 64

Using the Virtual Shared Memory
B: do i = 1, 3

eval('table entry', i, f(i))
end do

('table entry', 3, 1.585)

('table entry', 1, 0.65)
('table entry', 2, 1.005)

D: i = 3
rd('table entry', i, ?fi)

A2: . . .

('south', 1, 17, [1. 1.9 0.89])
('south', 17, 33, [1. 2. 0.99])

C: imin = 17
jmax = 32
in('south', imin, jmax+1, ?u(2:nxloc+1,nyloc+2))

A: out('south', imin, jmin, u(2:nxloc+1,2))

Scientific Computing Associates, Inc. Slide 13

Tuple/Template matching rules

❍ Same number of fields in tuple and template

❍ Corresponding field types match

❍ Fields containing data must match

Scientific Computing Associates, Inc. Slide 14

C Tuple data types

❍ In C, tuple fields may be of any of the following types:
int, long, short, and char, optionally preceded by unsigned.

float and double

struct

union

arrays of the above types of arbitrary dimension

pointers must always be dereferenced in tuples.

Scientific Computing Associates, Inc. Slide 15

Fortran Tuple types

❍ In Fortran, tuple fields may be of these types
Integer (*1 through *8), Real, Double Precision,

Logical (*1 through *8), Character, Complex, Complex*16

Synonyms for these standards types (for example, Real*8).

Arrays of these types of arbitrary dimension, including

multidimensional arrays, and/or portions thereof.

Named common blocks

Scientific Computing Associates, Inc. Slide 16

Array fields

❍ The format for an array field is name:len

char a[20];

out(“a”, a:); all 20 elements

out(“a”, a:10); first 10 elements

in(“a”, ?a:len); stores # recvd in len

Scientific Computing Associates, Inc. Slide 17

Matching Semantics

❍ Templates matching no tuples will block (except
inp/rdp)

❍ Templates matching multiple tuples will match
non-deterministically

❍ Neither Tuples nor Templates match oldest first

❍ These semantics lead to clear algorithms without
timing dependencies!

Scientific Computing Associates, Inc. Slide 18

Linda Distributed Data Structures

❍ Linda can be used to build distributed data structures in
Tuplespace

❍ Easier to think about than “data passing”

❍ Atomicity of Tuple Operations provides data structure
locking

Scientific Computing Associates, Inc. Slide 19

Linda Distributed Data Structures (examples)

❍ Counter
in(“counter”, “name”, ?cnt);

out(“counter”, “name”, cnt+1);

❍ Table
for(i=0; i<n; i++)

out(“table”, “name”, elem[i]);

Scientific Computing Associates, Inc. Slide 20

Linda Distributed Data Structures (examples)

❍ Queue init(){

out(“head”, 0);

out(“tail”, 0);

}

put(elem){

in(“tail”, ?tail);

out(“elem”, tail, elem);

out(“tail”, tail+1);

}

take(elem) {

in(“head”, ?head);

out(“elem”, head, elem);

out(“head”, head+1);

}

Scientific Computing Associates, Inc. Slide 21

The Linda Programming Environment

Scientific Computing Associates, Inc. Slide 22

Software Development with Linda

❍ Step 1: Develop and debug sequential modules

❍ Step 2: Use Linda Code Development System and
TupleScope to develop parallel version

❍ Step 3: Use parallel Linda system to test and tune
parallel version

Scientific Computing Associates, Inc. Slide 23

Linda Code Development System

❍ Implements full Linda system on a single workstation

❍ Provides comfortable development environment

❍ Runs using multitasking, permitting realistic testing

❍ Compatible with TupleScope visual debugger

Scientific Computing Associates, Inc. Slide 24

Parallel “Hello World”

#define NUM_PROCS 4
real_main(){

int i, hello_world();
out(”count”, 0);
for (i=1; i<=NUM_PROCS; i++)

eval(”worker”, hello_world(i));
in(”count”, NUM_PROCS);
printf(”all processes done.\n”);

}
hello_world(i)
int i;
{

int j;
in(“count”, ?j);
out(“count”, j+1);
printf(“hello world from process %d, count %d\n”, i, j);

}

Scientific Computing Associates, Inc. Slide 25

Using Linda Code Development System

% setenv LINDA_CLC cds
% clc -o hello hello.cl
CLC (V3.1 CDS version)
hello.cl:10: warning --- no matching Linda op.
% hello
Linda initializing (2000 blocks).
Linda initialization complete.
Hello world from process 3 count 0
Hello world from process 2 count 1
Hello world from process 4 count 2
Hello world from process 1 count 3
All processes done.
all tasks are complete (5 tasks).

Scientific Computing Associates, Inc. Slide 26

Hands on Session #1 - Hello World

❍ Compile hello.cl using the Code Development System.

❍ Run the program.

Scientific Computing Associates, Inc. Slide 27

Linda Termination

Linda Programs terminate in three ways:

❍ Normal termination: when all processes (real_main and
any evals) have terminated, by returning or calling lexit()

❍ Abnormal termination: any process ends abnormally

❍ lhalt() termination: any process may call lhalt()

The system will clean up all processes upon termination.

Do not call exit from within Linda programs!

Scientific Computing Associates, Inc. Slide 28

TupleScope Visual Debugger

❍ X windows visualization and debugging tool for parallel
programs

❍ Displays tuple classes, process interaction, program
code, and tuple data

❍ Contains usual debugger features like single-step of
Linda operation

❍ Integrated with source debuggers such as dbx, gdb.

Scientific Computing Associates, Inc. Slide 29

Linda TupleScope

Scientific Computing Associates, Inc. Slide 30

Debugging with the Linda
Code Development System

Compile program for TupleScope and dbx:

clc -g -o hello -linda tuple_scope hello.cl

Run program, single stepping until desired process is evaled

Middle click on process icon

Set breakpoint in native debugger window

Turn off TupleScope single stepping

Control process via native debugger

Scientific Computing Associates, Inc. Slide 31

TCP Linda

❍ TCP Linda programs are started via ntsnet utility

❍ Ntsnet will:
Read tsnet.config configuration file

Determine network status

Schedule nodes for execution

Translate directory paths

Copy executables

Start Linda process on selected remote machines

Monitor execution

Etc, etc.

Scientific Computing Associates, Inc. Slide 32

Running a program with ntsnet

❍ Create file ~/.tsnet.config containing the machine names:
Tsnet.Appl.nodelist: io ganymede rhea electra

❍ Compile the program with TCP Linda
% setenv LINDA_CLC linda_tcp

% clc -o hello hello.cl

❍ Run program with ntsnet
% ntsnet hello

Scientific Computing Associates, Inc. Slide 33

Hands on Session #2 - Ping Pong

❍ This exercise demonstrates basic Linda operations and
TupleScope

❍ Write a program that creates to workers called ping() and
pong(). Ping() loops, sending a “ping” tuple and
receiving a “pong”, while pong() does the opposite.

❍ Ping and pong should agree on the length of the game,
and terminate when finished.

❍ Compile and run the program using Code Development
System and TupleScope.

Scientific Computing Associates, Inc. Slide 34

Parallel Programming with Linda

Scientific Computing Associates, Inc. Slide 35

Parallel Processing Vocabulary

❍ Granularity: ratio of computation to communication

❍ Efficiency: how effectively the resources are used

❍ Speedup: performance increase as CPU’s are added

❍ Load Balance: is work evenly distributed?

Scientific Computing Associates, Inc. Slide 36

Linda Algorithms

❍ Live Task

❍ Master/Worker

❍ Domain Decomposition

❍ Owner Computes

This is not an exhaustive list: Linda is general and can
support most styles of algorithms

Scientific Computing Associates, Inc. Slide 37

Live Task Algorithms

❍ Simplest Linda Algorithm

❍ Master evals task tuples

❍ Retrieves completed task tuples

❍ Caveats:
simple parameters only

watch out for scheduling problems

think about granularity!

Scientific Computing Associates, Inc. Slide 38

Live Task Algorithms

Sequential Code

main()
{

/* initialize a[], b[] */
for (i=0; i<LIMIT; i++)
res[i]=comp(a[i], b[i]);

}

Linda Code

real_main()
{

/* initialize a[], b[] */
for (i=0; i<LIMIT; i++)
eval(“task”,i,comp(a[i],b[i]));

for (i=0; i<LIMIT; i++)
in(“task”, i, ?res[i]);

}

Scientific Computing Associates, Inc. Slide 39

Master/Worker Algorithms

❍ Separate Processes and Tasks
Tasks become lightweight

❍ Master
evals workers

generates task tuples

consumes result tuples

❍ Worker
loops continuously

consumes a task

generates a result

Scientific Computing Associates, Inc. Slide 40

Dynamic Load Balancing

WORKER

WORKER

WORKER

WORKER

WORKER

WORKER

Task to do
Task in progress
Completed task

Scientific Computing Associates, Inc. Slide 41

Master/Worker Algorithms: sequential code

main()
{

RESULT r;

TASK t;

while (get_task(&t)) {

r = compute_task(t);
update_result(r);

}

output_result();

}

Scientific Computing Associates, Inc. Slide 42

Master/Worker Algorithms: parallel code

real_main()
{

int i;

RESULT r;

TASK t;

for (i=0; i<NWORKER; i++)

eval(“worker”, worker());

for (i=0; get_task(&t); i++)

out(“task”, t);

for (; i; --i){

in(“result”, ?r);
update_result(r);

}

output_result();

}

worker()
{

RESULT r;

TASK t;

while (1) {

in(“task”, ?t);

r = compute_task(t);
out(“result”, r);

}

}

Scientific Computing Associates, Inc. Slide 43

Master/Worker Algorithms:

❍ To be most effective, you need:
Relatively independent tasks

More tasks than workers

May need to order tasks

❍ Benefits:
Easy to code

Near ideal speedups

Automatic load balancing

Lightweight tasks

Scientific Computing Associates, Inc. Slide 44

Domain Decomposition Algorithms

❍ Specific number of processes in a fixed organization

❍ Relatively fixed, message/passing style of communication

❍ Processes work in lockstep, often time steps

A PDE Example

∂u
∂t

= ∂ 2u
∂x2 + ∂ 2u

∂y2

u(x,y,t +dt)= u(x,y,t)+
dt

dx2 u(x+dx,y,t)+u(x−dx,y,t)−2u(x,y,t){ }+

dt
dy2

u(x,y+dy,t)+u(x,y−dy,t)−2u(x,y,t){ }

MASTER

STEP

WORKER

Master Routine
subroutine real_main
common /parms/ cs, cy, nts

. . . GET INITIAL DATA . . .

out(‘parms common’, /parms/)
np = 0
do ix = 1, nx, nxloc

ixmax = min(ix+nxloc-1, nx)
do iy = 1, ny, nyloc

iymax = min(iy+nyloc-1, ny)
np = np + 1
if (ix.gt.nxloc .or. iy.gt.nyloc) then

eval(‘worker’, worker(ix, ixmax, iy, iymax))
endif
out(‘initial data’, ix, iy, u(ix:ixmax, iy:iymax))

enddo
enddo
call worker(1, min(nxloc,nx), 1, min(nyloc,ny))
do i = 1, np

in(‘result id’, ?ixmin, ?ixmax, ?iymin, ?iymax)
in(‘result’, ixmin, iymin, ?u(ixmin:ixmax, iymin:iymax))

enddo
M
return
end

Worker Routines - I
subroutine worker(ixmin, ixmax, iymin, iymax)
common /parms/ cx, cy, nts
dimension uloc(NXLOCAL+2, NYLOCAL+2, 2)

nxloc = ixmax - ixmin + 1
nyloc = iymax - iymin + 1

rd(‘parms common’, ?/parms/)
in(‘initial data’, ixmin, iymin, ?uloc(2:nxloc+1,2:nyloc+1))

iz = 1
do it = 1, nts

call step(ixmin, ixmax, iymin, iymax, NXLOCAL+2,
* nxloc, nyloc, iz, uloc(1,1,iz), uloc(1,1,3-iz))

iz = 3 - iz
enddo

out(‘result id’, ixmin, ixmax, iymin, iymax)
out(‘result’, ixmin, iymin, uloc(2:nxloc+1, 2:nyloc+1, iz))

return
end

Worker Routines - II
subroutine step(ixmin, ixmax, iymin, iymax, nrows,
* nxloc, nyloc, iz, u1, u2)
common /parms/ cx, cy, nts
dimension u1(nrows, *), u2(nrows, *)

if (ixmin.ne.1) out(‘west’, ixmin, iymin, u1(2, 2:nyloc+1))
if (ixmax.ne.nx) out(‘east’, ixmax, iymin, u1(nxloc+1, 2:nyloc+1))
if (iymax.ne.ny) out(‘north’, ixmin, iymax, u1(2:nxloc+1, nyloc+1))
if (iymin.ne.1) out(‘south’, ixmin, iymin, u1(2:nxloc+1, 2))

if (ixmin.ne.1) in(‘east’, ixmin-1, iymin, ?u1(1,2:nyloc+1))
if (ixmax.ne.nx) in(‘west’, ixmax+1, iymin, ?u1(nxloc+2, 2:nyloc+1))
if (iymin.ne.1) in(‘north’, ixmin, iymin-1, ?u1(2:nxloc+1, 1))
if (iymax.ne.ny) in(‘south’, ixmin, iymax+1, ?u1(2:nxloc+1, nyloc+2))

do ix = 2, nxloc + 1
do iy = 2, nyloc + 2

u2(ix,iy) = u1(ix,iy) +
* cx * (u1(ix+1,iy) + u1(ix-1,iy) - 2.*u1(ix,iy)) +
* cy * (u1(ix,iy+1) + u1(ix,iy-1) - 2.*u1(ix,iy))

enddo
enddo

return
end

Scientific Computing Associates, Inc. Slide 49

Owner-Computes Algorithm

❍ Share loop iterations among different processors

❍ Iteration allocation can be dynamic

❍ Allows for parallelization with little change to the code

❍ Good for parallelizing complex existing sequential codes

Scientific Computing Associates, Inc. Slide 50

Owner-Computes: sequential code

main()

{

/* lots of complex initialization */

for (ol=0; ol<loops; ++ol) {

for (i=0; i<n; ++i) {

...

elem[i] = f(...); /* complex calculation */

...

}

/* more complex calculations using elem[]; */

}

/* output results to disk...*/

}

Parallel Owner Computes

real_main() {

out("task", 1);

for (i=1; i<NUMPROCS; ++i)

eval(old_main(i));

old_main(0);

}

old_main(id)

int id;

{

/* complex init */

for (ol=0; ol<loops; ++ol) {

for (i=0; i<n; ++i) {

if (!check()) continue;

...

elem[i] = f(...);

...

log_data(i, elem[i]);

}

gatherscatter();

/* more complex calc */

}

/* output results to disk...*/

}

check(){

static int next=0, count=0;

if (next==0) {

in("task", ?next);

out("task", next+1);

}

if (++count == next) {

next=0; return 1;

}

return 0;

}

log_data(i, val){

local_results[i].id = i;

local_results[i].val = val;

}

gatherscatter(){

if (myid==0)

/* master ins local results */

/* master outs all results */

else

/* worker outs local results */

/* worker ins all results */

}

Scientific Computing Associates, Inc. Slide 52

Hands on Session #3 - Live Task PI

❍ Convert sequential C program to parallel using live task
method.

❍ PI is the integral of 4/(1+x*x) from 0 to 1.

Hands on Session #3 - Sequential Program

main(argc, argv)

int argc;

char *argv[];

{

nsteps = atoi(argv[1]);

step = 1.0/(double)nsteps;

pi=subrange(nsteps,0.0,step)*step;

}

double subrange(nsteps,x,step)

{

double result = 0.0;

while(nsteps>0) {

result += 4.0/(1.0+x*x);

x += step;

nsteps--;

}

return(result);

}

Scientific Computing Associates, Inc. Slide 54

Linda Implementation

Scientific Computing Associates, Inc. Slide 55

Linda Implementation Efficiency

❍ Tuple usage analysis and optimization is the key to
Scientific’s Linda systems

❍ Optimization occurs at compile, link, and runtime

In general

❍ Satisfying an in requires touching fewer than two tuples

❍ On distributed memory architectures, communication
pattern optimizes to near message-passing

Scientific Computing Associates, Inc. Slide 56

Implementation

❍ 3 major components:
Compile Time: Language Front End

supports Linda syntax
supports debugging
supports tuple usage analysis

Link Time: Tuple-usage Analyzer

optimizes run-time tuple storage and handling
Run Time: Linda Support Library

initializes system
manages resources
provides custom tuple handlers
dynamically reconfigures to optimize handling

Scientific Computing Associates, Inc. Slide 57

Linda Compile-time Processing

Linda Source Code

Parser

Linda Engine

Native Compiler

Native Source Code

Native Object Code

Linda Object File

Tuple Usage Data

Scientific Computing Associates, Inc. Slide 58

Linda Link-time Processing

Linda Object Files

Analyzer

Native Compiler

Generated C Source Code

Generated C Object Code

Executable

Other Object Files

Object Code

Linda Library

Loader

Scientific Computing Associates, Inc. Slide 59

Tuple Usage Analysis

❍ Converts Linda operations into more efficient, low level
operations

❍ Phase I partitions Linda operations into disjoint sets
based on tuple and template content

❍ Example:
out (“date”, i, j)

can never match

in(“sem”, ?i)

Scientific Computing Associates, Inc. Slide 60

Tuple Usage Analysis

❍ Phase II analyzes each partition found in Phase I

❍ Detects patterns of tuple and template usage

❍ Maps each pattern to a conventional data structure

❍ Chooses a runtime support routine for each operation

Scientific Computing Associates, Inc. Slide 61

Linda Compile-Time Analysis Example

/* Add to order task list */
out(“task”, ++j, task_info) /* S1 */

/* Extend table of squares */
out(“squares”, i, i*i) /* S2 */

/* Consult table */
rd(”squares”, i, ?i2) /* S3 */

/* Grab task */
in(”task”, ?t, ?ti) /* S4 */

Scientific Computing Associates, Inc. Slide 62

Linda Compile-Time Analysis Example

❍ Phase I: two partitions are generated:
P1={S2, S3} P2={S1, S4}

❍ Phase II: each partition optimized:
P1:

Field 1 can be suppressed
Field 3 is copy only (no matching)
Field 2 must be matched, but key available ⇒hash implementation

P2:
Field 1 can be suppressed
Fields 2 & 3 are copy only (no matching) ⇒ queue implementation

Scientific Computing Associates, Inc. Slide 63

Linda Compile-Time Analysis

❍ Associative matching reduced to simple data structure
lookups

❍ Common set paradigms are:
counting semaphores

queues

hash tables

trees

❍ In practice, exhaustive searching is never needed

Scientific Computing Associates, Inc. Slide 64

Run Time Library

❍ Contains implementations of set paradigms for tuple
storage

❍ Structures the tuple space for efficiency

❍ Families of implementations for architecture classes
Shared-memory

Distributed-memory

Put/get memory

Scientific Computing Associates, Inc. Slide 65

TCP Linda runtime optimizations

❍ Tuple rehashing
Runtime system observes patterns of usage, remaps tuples to better

locations

Example: Domain decomposition

Example: Result tuples

❍ Long field handling
Large data fields can be stored on outing machine

We know they are not needed for matching

Bulk data transferred only once

Scientific Computing Associates, Inc. Slide 66

Hints for Aiding the Analysis

Use String Tags
out(“array elem”, i, a[i])

out(“task”, t);

❍ Code is self documenting, more readable

❍ Helps with set partitioning

❍ No runtime cost!

Scientific Computing Associates, Inc. Slide 67

Hints for Aiding the Analysis

Use care with hash keys

❍ Hash key is non-constant, always actual
out(“array elem”, iter, i, a[i])

in(“array elem”, iter, i, ?val)

❍ Analyzer combines all such fields (fields 2 and 3)

❍ Avoid unnecessary use of formal in hash field (common
in cleanup code)

in(“array elem”, ?int, ?int, ?float)

Scientific Computing Associates, Inc. Slide 68

Linda vs. the Competition

Scientific Computing Associates, Inc. Slide 69

Portable Parallel Programming

Four technology classes for Portable Parallel Programming:

❍ Message Passing - the machine language of parallel computing

❍ Language extensions - incremental build on traditional languages

❍ Inherently Parallel Languages - elegant but steep learning curve

❍ Compiler Tools - the solution to the dusty deck problem?

Scientific Computing Associates, Inc. Slide 70

Portable Parallel Programming:
the major players

Four technology classes for Portable Parallel Programming:

❍ Message Passing - MPI, PVM, Java RMI...

❍ Language extensions - Linda, Java Spaces...

❍ Inherently Parallel Languages - ??

❍ Compiler Tools - HPF

Scientific Computing Associates, Inc. Slide 71

Why not message passing?

❍ Message passing is the machine language of distributed-
memory parallelism
It’s part of the problem, not the solution

❍ Linda’s Mission:
Comparable efficiency with much greater ease of use

Scientific Computing Associates, Inc. Slide 72

Linda is a high-level approach

❍ Point-to-point communication is trivial in Linda, so you
can do message passing if you must...

❍ ... but Linda’s shared associate object memory is
extremely hard to implement in message passing

❍ Message Passing is a low-level approach

Simplicity of Expression
/* Receive data from master */
msgtype = 0;
pvm_recv(-1, msgtype);
pvm_upkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);
pvm_upkfloat(data, n, 1);

/* Do calculations with data */
result = work(me, n, data, tids, nproc);

/* Send result to master */
pvm_initsend(PvmDataDefault);
pvm_pkint(&me, 1, 1);
pvm_pkfloat(&result, 1, 1);
msgtype = 5;
master = pvm_parent();
pvm_send(master, msgtype);

/* Program done. Exit PVM and stop */
pvm_exit();

/* Receive data from master */
rd(“init data”, ?nproc, ?n, ?data);

/* Do calculations with data */
result = work(id, n, data, tids, nproc);

/* Send result to master */
out(“result”, id, result);

PVM Linda

Scientific Computing Associates, Inc. Slide 74

Global counter in Linda vs. Message Passing

❍ Example in “Using MPI”, Gropp, et. al. was more than two
pages long!

❍ Several reasons:
– MPI cannot easily represent data apart from processes

– Must build a special purpose “counter agent”

– All data marshalling is done by hand (error prone!)

– Must worry about “group issues”

❍ In Linda, counter requires 3 lines of code!

Scientific Computing Associates, Inc. Slide 75

Why Linda’s Tuple Space is important

Parallel program development is much easier than with
message passing:

❍ Dynamic tasking

❍ Distributed data structures

❍ Uncoupled programming

❍ Anonymous communication

❍ Dynamically varying process pool

Scientific Computing Associates, Inc. Slide 76

Hands on session #4: Monte Carlo PI

❍ Pi can be calculated by the
probability of randomly placed
points falling within a circle

❍ Use master/worker algorithm to
parallelize program

r

square

circle

circle

square

a
a

ra
ra

4

4
2

2

=

=
=

π

π

Scientific Computing Associates, Inc. Slide 77

Poison Pill Termination

❍ Common Linda idiom in
Master/Worker algorithms

❍ Master creates a special task
that causes evaled processes
to terminate.

real_main()
{

for(i=0; i<NWORKERS; i++)
eval(“worker”, worker());

...

/* got all results */

out(“task”, POISON, t);

...

}

worker()
{
...

in(“task”, ?tid, ?t);
if (tid==POISON) {

in(“task”, ?tid, ?t);
return();

}
...

}

Scientific Computing Associates, Inc. Slide 78

Hands on session #5: Matrix Multiplication

❍ This exercise develops a Linda application with non-trivial
communication costs

❍ Write a program that computes C=A*B where A, B, C are
square matrices

❍ Parallelism can be defined at any of the following levels:
single elements of result matrix C

single rows (or columns) of C

groups of rows (or columns) of C

groups of rows and columns (blocks) of C

Scientific Computing Associates, Inc. Slide 79

Hands on session #5: Matrix Multiplication

❍ For your algorithm, estimate the ratio of communication
to computation, assuming that:
Computational speed is 100 Mflops

Communication speed is 1 Mbytes/sec with 1 msec latency (ethernet)

❍ How much faster must the network be?

