
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lecture 6: Functional computation:
Preamble to functional programming

K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

16 September 2019

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 1 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

If you haven’t seen functional programming (FP) before

For now, take functional programming as a name, what you call something.
What’s in a name? That which we call a rose
By any other name would smell as sweet;

— Juliet, in Romeo and Juliet, Act II, Scene 2

The word functional can mean (the Oxford Dictionary gives more):
1 Relating to the way in which something works or operates.

▶ there are important functional differences between left and right brain
2 Designed to be practical and useful, rather than attractive.

▶ a small, functional bathroom
3 In operation; working.

▶ the museum will be fully functional from the opening of the festival
4 Mathematics: Relating to a variable quantity whose value depends

upon one or more other variables.
Only the last applies. And even that tells you little.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 2 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Our first computations are functional ! (in the FP sense)

5 + 3 = 8
▶ where 5 + 3 is the sum and 8 is the answer.
▶ The answer is often a name, which we understand without further ado.

But the symmetry in 5 + 3 = 8 is partly misleading.
▶ 8= 5 + 3 is true, but no child calls 8 the sum and 5 + 3 the answer.

⋆ 5 + 3 is not a name.
⋆ Also, 8 can also be 6+2, etc.

So 5 + 3 → 8 is better notation for this computation.
▶ 5 + 3 is the expression to be evaluated and 8 is a canonical term

⋆ A canonical term cannot be reduced further.
⋆ It is typically a name.

▶ Evaluation may consist of several reductions →, as in
2*(5+3)→ 2*8→ 16.

Evaluation stops at a canonical term, 16.
⋆ When Europe learned the Indian decimal numerals, 16 → XVI.
⋆ So what is canonical is a convention.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 3 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The answer doesn’t change during evaluation
5+3 and 8 do have the same value, eight. So 5+3=8 is OK, even in FP.

2*(5+3) 2*8 16 canonical term, name

sixteen
answer, 2 steps off

answer, 1 step off answer, immediate

Depending on study of arithmetic and language, we might
see both 2*(5+3) and 16 as sixteen almost equally fast.

▶ 2*(5+3), 2*8 and 16 have the same value even in a larger expression
see (again, as adults) that

▶ sixteen is ten+six, and that 8 is the name for the 7th. successor of 1.
Structured names often become simple names.

▶ A spårvagn is usually just seen as a tram, not as a track+carriage.
▶ Mr. Johnson is not John’s son (though someone was, at some point)

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 4 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

What does change in functional computation? knowledge

Note that in the mini-computation 5 + 3 → 8
▶ Neither 5 nor 3 "became" 8!
▶ In fact, no data changed at all, not even the expression 5 + 3.

Then why bother compute?
▶ What changed was our knowledge. We now know the answer, 8.

Compare: "Do you see the girl in the blue blouse?"
"Ah, you mean Alice."

▶ Evaluation, the girl in the blue blouse → Alice
a description → a name (a canonical value)

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 5 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Function definitions and programs in FP

So far, we have only seen arithmetic evaluations, but we can illustrate FP
by defining some arithmetic functions ourselves, though these are built-in
to most practical FP systems.
Even in our toy system, we shall take 8 as the name for the 7th. successor
of 1, or more conveniently the 8th. successor of 0. These integer names
are taken to be defined as

1 1 = succ (0)
2 2 = succ (1) , ... and so on

+ is the infix version of the function add, defined recursively by
1 add (0,y) = y
2 add(succ(x),y) = succ(add(x,y))

This definition and the built-in integer names constitute a program in FP.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 6 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Running FP programs

Running the program consists of giving it an expression to evaluate, using
definitions in the program.
To evaluate an expression pattern match it against the given definitions.
So add(2,5) → add(succ(succ(0)),5) by the definition of 2

→ succ(add(succ(0),5)) by line 2 of add
→ succ(succ(add(0,5))) by line 2 of add
→ succ(succ(5)) by line 1 of add
→ succ(6) by the definition of 6
→ 7 by the definition of 7

So each reduction step replaces the left-hand-side (lhs) of some definition
clause by the right-hand-side (rhs).
We can run the program with new input. Give it add(3,5), for example.
Once we load a new program into an FP system, it will do a
read-eval-print loop. (Read the new input, evaluate it, print the result).

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 7 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Variables in FP

The variables in the definition of add are parameters, as for functions
in mathematics. In add(3,4), we have y=4 and y doesn’t change for
the duration of the evaluation, the lifetime of the variable.
Names like 2 are defined in terms of previously known terms.
Most FP languages allow "Let" as in algebra:

▶ We are told "Mother gave me some apples. I gave 2 to Tim, and now
have 3 left. How many did mother givve me?"

⋆ We go "Let x be the number of apples", so x-2=3", so x=5.
⋆ Notice that x here never changes. It was always 5, but we learn that

only after solving the equation. The scope of the unknown x is only
this problem. We can re-use x later.

Variables that actually change while in the same scope and lifetime
seem only to occur in imperative programming!

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 8 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

No commands in FP

The only commands we’ve seen are read, eval, print. They are
run-time system commands, not part of the program.
No commands means no loops and no sequencing!

▶ We use recursion instead of loops in FP.
▶ We don’t have sequencing either, instead we use "and" of timeless

statements as in mathematics.
⋆ The term statements is a misnomer when used to describe imperative

languages. Those are commands.
▶ Sometimes we use if-then-else in FP instead of pattern matching.

⋆ The if-then used in imperative programming (else go on to the next
command) makes no sense in FP.

But Erlang processes send and receive messages, and spawn other
processes. Those are not part of the FP subset of Erlang.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 9 / 10



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Copyright

© 2019 K. V. S. Prasad
Except where otherwise noted, this work is licensed under the Creative

Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 6: Functional computation:Preamble to functional programming16 September 2019 10 / 10

http://creativecommons.org/licenses/by-sa/4.0/

