Lecture 4. Mutex with only atomic reads and writes
(Impractical, but help understand concurrent programs)

K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

12 September 2019

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 1/9

Hardware atomic actions

Concurrency means and communicating processes. Communicating what?
@ shared resources (including data)

e Synchronisation (timing signals)

In the 1950's, 1/O devices were run in parallel with the CPU, and the

mutex access to the shared buffer was managed by timing.

But this is delicate. A robust solution would use explicit synchronisation:
1 atomic(if resource free then grab resource);

//atomic prevents other processes from stealing the resource
//between the if test and the then action.

> release resource

Now CPU instructions are typically atomic: they execute fully or not at all.
How do we make larger sections of code (like line 1 above) atomic ?

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 2/9

Mutex with only atomic reads and writes
(Impractical, but help understand concurrent programs)

In the 1960’s, hardware instructions like test-and-set were introduced
- to create such larger atomic sections of code

- and to do this in software via primitives like locks and semaphores

But some curious questions bothered people:
@ Do we really need packaged instructions like test-and-set?

e Could (atomic) read and write be enough?

Surprisingly, the answer to the second question is yes!

Today, we see one such solution, Peterson’s algorithm, after first looking
at simpler attempts.

@ Such algorithms are not practical solutions to the CS problem

@ But they are excellent to help understand concurrent programs

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 3/9

CS problem for two processes, with one turn
Reminder: we require that the program satisfy
e mutex property: if pis at p2 (abbr. "p2"), then - g2
@ deadlock free: pl A q1 — p and q will not both be stuck waiting
(i.e., p or q will progress to CS)

@ starvation free: pl — p will progress to CS

int turn :==1
process p process
while true { while true {
//NCS; //NCS;
pl: await(turn=1); | ql: await(turn=2);
//CS; //CS;
p2: turn:=2; q2: turn:=1,;
b ti

await(turn=2) is a busy loop of atomic while (turn!=2);
//while turn is not 2, do nothing

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 4/9

State diagram, of CS program with one turn

))

pl: await(turn=1); pl: await(turn=1);
ql: await(turn=2); ql: await(turn=2);
turn=2 turn=1

q p
pl: await(turn=1); p2: turn:=2;
g2: turn:=1; ql: await(turn=2);
turn=2 turn=1

o ¥

@ No state has p2 and q2. So mutex.

@ No state has both processes in red (blocked). Also, every state has an
exit arrow. So no deadlock.

@ Both pl and gl can also loop in the NCS before starting await. So if
pl is blocked, and ql is looping in its NCS, then p is starved.

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 5/9

Detour through the Sandro/Carlo slides 20 - 30 for naive and Peterson’s
algorithm, and slides 52-53 for test-and-set
Then back here.

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 6/9

CS problem with swap

Suppose swap(x,y) atomically interchanges the values of x and y.

intc:=1
process p process ¢
int | :=0; int | :=0;
while true {//NCS; | while true {//NCS;
pl: while (/=0) { ql: while (/=0) {

p2: swap(c, 1); | q2: swap(c, 1);
}i//CS; +//CS;
p3: swap(c,l);}; q2: swap(c,1);};

@ Suppose we refer to the / of p as /p and to the / of g as /q.
Invariant: Exactly one of ¢, Ip, /g is 1; the others are 0.
Therefore mutex. The process in its CS has its I=1.

@ One process has to get the token, and won't give it back until after
the CS. So no deadlock.

@ Can starve if p only swaps when ¢=0, but would have to be very
unlucky. Fair but consistently badly synched scheduler.

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 7/9

The bakery algorithm

int np:=20;int ng:=0
process p process q
while true {NCS; while true {NCS;
pl: np = ng+1, ql: ng := np+1,;
p2: await (ng=0 or np<ng); | q2: await (np=0 or ng<np);
p3: CS; np:=0;}; q3: CS; ng:=0;};

Note the asymmetry in p2 and q2.

Invariants: np=0 iff pl, and p3 — C, where C=(ng=0) or (np<ng).

Also, ng=0 iff q1, and g3 — D, where D=(np=0) or (np<nq).
- The pl and gl invariants are trivial.

- The second is true at init.
Suppose —p3 and —C. If now p3 becomes true, it must be by
executing p2, so C will become true too.
Suppose p3 and C. Can we reach p3 and =C? Then only g can act, at
g2 or g5, and both make C true.

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019 8/9

Mutex for the bakery algorithm

We had

Invariants: np=0 iff p1, and p3 — C, where C=(ng=0) or (np<ng).
Also, ng=0 iff q1, and q3 — D, where D=(np=0) or (ng<np).

Can p3Ag3 be true?
If p3AQ3, then from the pl and gl invariants, np# 0Anqg# 0.
Then from the p3 and g3 invariants, p3Aq3—(np<nq)A(np<ng).

From this contradiction, it follows that p3Aq3 cannot be true. Mutex.

K. V. S. Prasad (TDA384/DIT391 PrinciplesLecture 4: Mutex with only atomic reads and 12 September 2019

9/9

