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Lecture 4: Mutex with only atomic reads and writes
(Impractical, but help understand concurrent programs)
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Hardware atomic actions

Concurrency means and communicating processes. Communicating what?
shared resources (including data)
Synchronisation (timing signals)

In the 1950’s, I/O devices were run in parallel with the CPU, and the
mutex access to the shared buffer was managed by timing.
But this is delicate. A robust solution would use explicit synchronisation:

1 atomic⟨if resource free then grab resource⟩;
//atomic prevents other processes from stealing the resource
//between the if test and the then action.

2 release resource

Now CPU instructions are typically atomic: they execute fully or not at all.
How do we make larger sections of code (like line 1 above) atomic ?
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Mutex with only atomic reads and writes
(Impractical, but help understand concurrent programs)

In the 1960’s, hardware instructions like test-and-set were introduced
- to create such larger atomic sections of code
- and to do this in software via primitives like locks and semaphores

But some curious questions bothered people:
Do we really need packaged instructions like test-and-set?
Could (atomic) read and write be enough?

Surprisingly, the answer to the second question is yes!
Today, we see one such solution, Peterson’s algorithm, after first looking
at simpler attempts.

Such algorithms are not practical solutions to the CS problem
But they are excellent to help understand concurrent programs
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CS problem for two processes, with one turn
Reminder: we require that the program satisfy

mutex property: if p is at p2 (abbr. "p2"), then ¬ q2
deadlock free: p1 ∧ q1 → p and q will not both be stuck waiting

(i.e., p or q will progress to CS)
starvation free: p1 → p will progress to CS

int turn := 1
process p process q
while true { while true {

//NCS; //NCS;
p1: await(turn=1); q1: await(turn=2);

//CS; //CS;
p2: turn:=2; q2: turn:=1;

}; };

await(turn=2) is a busy loop of atomic while (turn!=2);
//while turn is not 2, do nothing
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State diagram, of CS program with one turn

p1: await(turn=1);
q1: await(turn=2);
turn=2

p1: await(turn=1);
q1: await(turn=2);
turn=1

p1: await(turn=1);
q2: turn:=1;
turn=2

p2: turn:=2;
q1: await(turn=2);
turn=1

p

q

p

q
p

q

p

q
No state has p2 and q2. So mutex.
No state has both processes in red (blocked). Also, every state has an
exit arrow. So no deadlock.
Both p1 and q1 can also loop in the NCS before starting await. So if
p1 is blocked, and q1 is looping in its NCS, then p is starved.
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Detour through the Sandro/Carlo slides 20 - 30 for naive and Peterson’s
algorithm, and slides 52-53 for test-and-set
Then back here.
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CS problem with swap
Suppose swap(x,y) atomically interchanges the values of x and y.

int c := 1
process p process q
int l := 0; int l := 0;
while true {//NCS; while true {//NCS;
p1: while (l=0) { q1: while (l=0) {
p2: swap(c, l); q2: swap(c, l);

};//CS; }; //CS;
p3: swap(c,l);}; q2: swap(c,l);};

Suppose we refer to the l of p as lp and to the l of q as lq.
Invariant: Exactly one of c, lp, lq is 1; the others are 0.
Therefore mutex. The process in its CS has its l=1.
One process has to get the token, and won’t give it back until after
the CS. So no deadlock.
Can starve if p only swaps when c=0, but would have to be very
unlucky. Fair but consistently badly synched scheduler.
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The bakery algorithm

int np := 0; int nq := 0
process p process q
while true {NCS; while true {NCS;
p1: np := nq+1; q1: nq := np+1;
p2: await (nq=0 or np≤nq); q2: await (np=0 or nq<np);
p3: CS; np:=0;}; q3: CS; nq:=0;};

Note the asymmetry in p2 and q2.
Invariants: np=0 iff p1, and p3 → C, where C=(nq=0) or (np≤nq).
Also, nq=0 iff q1, and q3 → D, where D=(np=0) or (np<nq).

- The p1 and q1 invariants are trivial.
- The second is true at init.

Suppose ¬p3 and ¬C. If now p3 becomes true, it must be by
executing p2, so C will become true too.
Suppose p3 and C. Can we reach p3 and ¬C? Then only q can act, at
q2 or q5, and both make C true.
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Mutex for the bakery algorithm

We had
Invariants: np=0 iff p1, and p3 → C, where C=(nq=0) or (np≤nq).
Also, nq=0 iff q1, and q3 → D, where D=(np=0) or (nq<np).
Can p3∧q3 be true?
If p3∧q3, then from the p1 and q1 invariants, np ̸= 0∧nq̸= 0.
Then from the p3 and q3 invariants, p3∧q3→(np≤nq)∧(np<nq).
From this contradiction, it follows that p3∧q3 cannot be true. Mutex.
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