
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lecture 3: Semaphores

K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

9 September 2019

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 1 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Process states, showing who causes the transitions
The picture as seen by process p.

unborn ready running

blocked

done
run?

schedule?

suspend?

wait!
signal?

exit!

Convention, borrowed from Hoare’s CSP, is ! for speech and ? for hearing.
The run? action is by the parent process (who creates p).
exit! and wait! are the only actions taken p itself.
The signal? action is taken by a process other than p.
schedule? and suspend? are actions taken by the invisible scheduler.
No process can tell whether p is ready or running.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 2 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Definition of general semaphore
semaphore is a type or class, with atomic methods wait and signal.

Data: A pair 〈int V, set L〉, where V is the number of tokens
available, (each representing a shared resource) and L is the
set of processes blocked on the semaphore.
Typically, V is initialised to the total number of tokens, and
L to the empty set, ∅.

Method wait: if V > 0 then V--
else {L := L ∪ p; //where p is the process doing the wait

block p} //when p is unblocked, it completes wait
//by simply exiting the method.

Method signal: if L = ∅ then V++
else {L := L-q; //where q is an arbitrary process in L

make q ready}
Writers often drop L, as though the semaphore is just V. But the blocking
and unblocking of processes is associated with wait and signal.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 3 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Semaphore invariants

Let semaphore S be initialised to ⟨k, ∅⟩, where k ≥ 0. Then the following
are invariant:

1 S.V ≥ 0
2 S.V + #wait(S) = k+ #signal(S)

Proof by induction on number of semaphore instructions. (Other
instructions do not affect S.V).

1 Base: True at initialisation.
Step: signal(S) can only increase S.V;

wait(S) decrements it by 1 only if S.V> 0.
2 Base: True at initialisation; no sem actions yet.

Step: wait decrements S.V only if it goes through. Otherwise neither
S.V nor #wait(S) change.
signal always goes through. It increments either S.V or #wait(S) by
unblocking a process blocked on S.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 4 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Definition of binary semaphore

A binary semaphore is like a general semaphore, except that V can only be
0 or 1. Method wait is as for general semaphore, but signal changes.

Data: A pair 〈bool V, set L〉, where V=0 (resp. 1) means the
shared resource is (un)available.
Typically, V is initialised to 1 (available), and L to ∅.

Method wait: if V = 1 then V:= 0
else {L := L ∪ p; //where p is the process doing the wait

block p}
Method signal: if V = 1 then undefined!

else {if L = ∅ then V:= 1
else {L := L-q; //where q is an arbitrary process in L

make q ready}
}

The semaphore invariants hold for binary semaphores too.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 5 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

CS problem for two processes, with semaphores
Reminder: we require that the program satisfy

mutex property: if p is at p3 (abbr. "p3"), then ¬ q3
deadlock free: p2 ∧ q2 → p and q will not both be stuck waiting

(i.e., p or q will progress to CS)
starvation free: p2 → p will progress to CS

binary sem S := ⟨0, ∅⟩
process p process q
while true { while true {
p1: NCS; q1: NCS;
p2: wait(S); //entry protocol q2: wait(S); //entry protocol
p3: CS; q3: CS;
p4: signal(S); //exit protocol q4: signal(S); //exit protocol

}; }

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 6 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Abbreviated CS program with binary semaphore
We remove the uninteresting commands to reduce the number of states
we have to reason about, giving

binary sem S := ⟨0, ∅⟩
process p process q
while true { while true {
p2: wait(S); //entry protocol q2: wait(S); //entry protocol
p4: signal(S); //exit protocol q4: signal(S); //exit protocol

}; }

Reminder: At p4, p is yet to execute its exit protocol, so it is in its CS.
Thus we require that the program satisfy

mutex property: if p is at p4 (abbr. "p4"), then ¬ q4
deadlock free: p2 ∧ q2 → p and q will not both be stuck waiting

(i.e., p or q will progress to CS)
starvation free: p2 → p will progress to CS

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 7 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

State diagram, abbreviated CS program with binary sem

p2: wait(S);
q2: wait(S);
S=⟨1, ∅⟩

p4: signal(S);
q2: wait(S);
S=⟨0, ∅⟩

p4: signal(S);
q2: blocked;
S=⟨0, {q}⟩

p2: wait(S);
q4: signal(S);
S=⟨0, ∅⟩

p2: blocked;
q4: signal(S);
S=⟨0, {p}⟩

p

p

q q

q

p

p

q

The start state is at top left
In the red states

▶ one process is blocked, so only the other can move
▶ only one move, by the process blocking itself, leads to a red state.

In the green states, both can move
▶ From the light green states, the system either moves back to the start

state, or to a blocking state.
Convention, borrowed from Hoare’s CSP, is ! for speech and ? for hearing.

The run? action is by the parent process (who creates p).
exit! and wait! are the only actions taken p itself.
The signal? action is taken by a process other than p.
schedule? and suspend? are actions taken by the invisible scheduler.
No process can tell whether p is ready or running.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 8 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Correctness of semaphore CS program from state diagram

Mutex There is no state with p4 and q4. We can draw such a state,
but it is not reachable from the start state of the program.

Deadlock There is no state where both processes are blocked. There is
always a move from every reachable state.

Starvation If p is blocked, then q is poised to do a signal, i.e., q is in its
CS. So it must in a finite time exit its CS (i.e., do the
signal), and so in a finite time lead p into its CS.
If p is poised to do a wait, an unfair scheduler may let q loop
around wait and signal. This is the only loop where p makes
no progress to its CS. Since p is always ready to do its wait,
a fair scheduler must let it act eventually and lead to ts CS.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 9 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Questions to ponder

Why is the semaphore defined this way? Why not let signal always
increment S.V and let someone else (who?) get a waiting process to retry
wait?

There are many other patterns to discover in the state diagram. Why 5
states? How odd that such a symmetric program produces an odd number
of states!

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 10 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Correctness of semaphore CS program by invariants

Lemma: The initial value k of S.V is 1 in this program, so the 2nd
semaphore invariant becomes S.V + #wait(S) = 1+ #signal(S).
Let #CS = #wait(S) − #signal(S); it is the number of processes in
their CSs. Then #CS = 1 - S.V.
Then for this program, #CS+S.V = 1 is another form of the 2nd
semaphore invariant.
Mutex: The 1st semaphore invariant is S.V≥ 0, so #CS ≤ 1.
Deadlock: If we are in deadlock, both processes are blocked, so it
must be that S.V=0. But also #CS = 0. Contradicts the above, so
deadlock is not possible.
Starvation: Suppose p is starved, so S.V=0 and p∈S.L. Then because
#CS+S.V = 1, it follows that #CS = 1 and q is in its CS, and
S.L={p}. Then q has to do a signal(S) and thus lead p to its CS.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 11 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Producer-consumer (PC) infinite buffer, with semaphores
An infinite buffer B holds items produced by producer, p, and consumed
by consumer, c. While p can always act, c must wait if B is empty.
Semaphore N is used to ensure this.

queue of int B := ∅
sem N := ⟨0, ∅⟩

process p process c
int d; int d;
while true { while true {
p1: append(d, B); c1: wait(N);//cons protocol
p2: signal(N); //prod protocol c2: d:= take(B);

}; };

Note: p does the signal(N), while c does the wait(N). Note also that the
CS and protocols occur in different orders in p and c.
Since the buffer can grow indefinitely, the state diagram can too. So we
cannot use that for proofs.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 12 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Producer-consumer (PC) infinite buffer, invariants

We begin with a simplifying assumption: make the two actions of p into
one atomic action, and similarly for q. For pedagogical reasons; the
assumption can be removed!
Then N.V = #B is an invariant. True initially. Every atomic action by p
increments both N.V and #B. Every atomic action by c decrements both
N.V and #B.
So PC safety: c never removes an item from an empty buffer.
Deadlock: Only c can block, and it won’t as long as p produces. (p is
allowed to stop; that is not a deadlock).
Starvation: Only c can block, and with a fair scheduler, it can always act
as long as B is non-empty.
The last two arguments are degenerate cases.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 13 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Producer-consumer (PC) finite buffer, with semaphores
A finite buffer B holds up to N items produced by producer, p, and
consumed by consumer, c. The conditions: c must wait if B is empty, and
p must wait if B is full. Semaphores E and F are used to ensure this.

queue [capacity N] of int B := ∅
sem E := ⟨0, ∅⟩, sem F := ⟨N, ∅⟩

process p process c
int d; int d;
while true { while true {
p1: wait(F); //pre-protocol c1: wait(E); //pre-protocol
p2: append(d, B); c2: d:= take(B);
p3: signal(E); //post-protocol c3: signal(F); //post-protocol

}; };

NB: p does wait(F) and signal(E), while q does wait(E) and signal(F).
The PC safety requirement is that c never removes an item from an empty
buffer, and that p never puts an item into a full buffer.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 14 / 16



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

State diagram, abbreviated PC program, 1-place buffer

p1, c1, 0 p3, c1, 0 p1, c1, 1 pb, c1, 1

p1, cb, 0 p3, cb, 0 p1, c3, 1 pb, c3, 1

p p p

p p p

c c c c

cc

p1: wait(F), p1: blocked and p1: signal(E) are the three states of p,
and similarly for q. The third parameter in each state notes whether
there is an item in the buffer.
The start state is at top left
In the red states

▶ one process is blocked, so only the other can move
K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 3: Semaphores 9 September 2019 15 / 16


	History

