
Lecture 1: Introduction to Concurrency
Today, mostly Shared Memory

K. V. S. Prasad

TDA384/DIT391 Principles of Concurrent Programming
Chalmers Univ. and Univ. of Gothenburg

2 September 2019

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 1 / 21



Outline

1 More practical stuff

2 Specification, Validation, Behaviour, and Verification

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 2 / 21



Section 1

More practical stuff

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 3 / 21



From Robin Adams
to students of DIT991 Mathematical Modelling

We apologise for the mistake in timetabling. The recording of the
Mathematical Modelling lecture will be available on the course website
from this evening. Please watch it as soon as possible, and in particular
make sure you understand the section ”Structure of the Course”. Please
contact Robin Adams if anything is not clear.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 3 / 21



Student Representatives

email Name

TKDAT binde@student.chalmers.se Johannes Binde
TIDAL frodin@student.chalmers.se Thomas Frdin Larsson
TKDAT davhedg@student.chalmers.se David Hedgren
TIDAL ponjo@student.chalmers.se Pontus Johansson
TKDAT axeka@student.chalmers.se Axel Karlsson
TKITE markp@student.chalmers.se Markus Pettersson
TKDAT valterh@student.chalmers.se Henrik Valter

Table: From CTH

Still waiting for GU admin to send us their lst of names. Volunteers?

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 4 / 21



Programming Languages

Labs: Java for labs 1 and 3, Erlang for lab 2.

Exam
I pseudo-Java (full Java in Appendix if needed)
I Erlang

Lectures
I pseudo-Java (fullish Java occasionally)
I Erlang
I Occasionally, we widen horizon beyond exam

- These lectures or parts of lectures are optional, ignore if you wish.
- We might use ad-hoc notation, or Promela. You only need to read
these, not write.

- Promela = concise modelling language for concurrency. Allows models
beyond Java and Erlang. Runs on simulator with assertion checking.

Ben-Aris text book uses pseudo code, and supports Java and Promela.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 5 / 21



What is Erlang?

Java, C, Python, etc. are all imperative:
I program = sequence of commands, which change the state.
I Assignment is the only command. I/O is a special kind of assignment.

F Control flow (if, case, loop, etc.) says which assignment is next.

Erlang
I has no assignment
I Each process can send messages to other processes, and receive

messages from its inbox, where messages wait till they are read.
I Messages from a process are typically functions of its state and inputs.
I These functions are computed functionally

Haskell is a functional language you may have seen
I Erlang is one too (if you ignore the messages), but it has no static

types, so expect more errors
I If you have never programmed functionally

F GET STARTED NOW WITH ERLANG TUTORIALS

Tutorial on Erlang and functional programming in week 3.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 6 / 21



Section 2

Specification, Validation, Behaviour, and Verification

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 7 / 21



How to design Concurrent (think Embedded) systems

Clear and efficient programs, good tools and libraries are fine, but we need

formal (= machine checkable) goals and tests for the sysem to be built.

Why? The system (call it ”Sys”) might fly a plane, drive a car or train, or
control a nuclear reactor or radiation therapy machine. Sys can kill people.

Two questions to clarify the goal and test of success:

What should the system do? Specification (”Spec”)

What does it do? (Operational) semantics

and two slogans

Build the right system—Validate Spec. Is it consistent? complete?
I Do you really want Sys to behave as Spec says?

Build the system right—Verify Sys against Spec

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 7 / 21



On Validation and Verification for Sequential programs

What should a sort (sorting) or sqrt (square root) program do?
I For input x of specific type (positive number to sqrt, a deck of cards

only to sort), produce the desired output Spec(x).

So Spec is a huge table of output for each input. Given as a complete
set of cases, or a partial set of use cases, generalised sensibly.

Formal Spec converts exhaustive check to case analysis.
I As we prove theorems about every triangle, etc.
I To Validate: exhaustively check that Spec is complete and consistent.
I To Verify: exhaustively check that Spec=Sys

F (i.e., for every x, Spec(x)=Sys(x)).

Sometimes, Spec is a simple, obviously correct but impractical
program (called a golden or reference model in circuit design). Then
again we want Spec=Sys as above, but rather more directly.

I See Shufflesort below as an example reference program.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 8 / 21



On specifications and assertions

Imperative programs are sequences of commands. The code snippet below
has an implicit ”evaluate 5*7” and then ”put the result in x”.

Listing 1: expression evaluation as implicit command

1 x = 5∗7

In specifications, by contrast, assertions (boolean propositions) are central.

For example, given x¿0, a program to find the square root of x might have
Spec ”find the y such that y2 = x”. Note that Spec does not say how to
find this y, though it implies that it exists.

Listing 2: assert to do run-time test that Spec is met

1 y=s q r t ( x ) ; // f u n c t i o n s q r t runs a sq . r o o t
a l g o r i t hm

2 a s s e r t ( y∗y=x ) // r a i s e s e x c e p t i o n i f s q r t f a i l s t e s t

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 9 / 21



Partial specifications: sorting a deck of cards

Suppose sorted(xs) returns true iff the deck xs is sorted.

Then the program below correctly sorts a given deck of cards, if it ever
gets to line 3. The claim Line 3→sorted(deck) is a safety requirement.
Slogan: nothing bad ever happens. (Bad=Line 3 ∧ notsorted(deck)).

Listing 3: Shufflesort

1 wh i l e ( not s o r t e d ( deck ) )
2 { s h u f f l e deck }
3 a s s e r t ( s o r t e d ( deck ) ) // e x c e p t i o n i f un so r t ed

But we also want the sort to terminate. This is an example of a liveness or
progress requirement. Slogan: something good eventually happens.

That Line 3 eventually holds cannot be shown by assertions.

E.g., to show that bubble sort terminates (when no elements out of place),
show that each pass moves one element to its correct place, so the
number of elements possibly out of place drops to 0.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 10 / 21



Embedded Systems: what can go wrong with validation

https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-
disaster-looks-to-a-software-developer

I would appreciate hearing if you could find this using the Chalmers library.

So Boeing produced a dynamically unstable airframe, the 737 Max. That
is big strike No. 1. Boeing then tried to mask the 737s dynamic instability
with a software system. Big strike No. 2. Finally, the software relied on
systems known for their propensity to fail (angle-of-attack indicators) and
did not appear to include even rudimentary provisions to cross-check the
outputs of the angle-of-attack sensor against other sensors, or even the
other angle-of-attack sensor. Big strike No. 3.

None of the above should have passed muster. None of the above should
have passed the OK pencil of the most junior engineering staff, much less
a Designated Engineering Representative. Thats not a big strike. Thats a
political, social, economic, and technical sin.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 11 / 21



Embedded Systems: what else can go wrong and right

Auto-pilots that dump the aircraft in the pilot’s lap in crisis (do pilots
now mostly monitor the auti-pilot, and scarcely fly?). Bad Spec?

The Human Factor by William Langewiesche, Vanity Fair, Sep 2014.
www.vanityfair.com/news/business/2014/10/air-france-flight-447-crash

Bad implementation. The many things that can go wrong because of
concurrency (coming soon).
https://ocw.mit.edu/ans7870/6/6.005/s16/classes/19-concurrency/
https://www.coursera.org/lecture/software-design-threats-
mitigations/therac-25-case-study-VmQPa
https://compas.cs.stonybrook.edu/ nhonarmand/courses/fa17/cse306/slides/13-
conc bugs.pdf

But all can go right. https://en.wikipedia.org/wiki/Shinkansen
”Over the Shinkansen’s 50-plus year history, carrying over 10 billion
passengers, there have been no passenger fatalities due to train
accidents such as derailments or collisions, despite frequent
earthquakes and typhoons.”

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 12 / 21



Parallelism around us

The world is a parallel place. Most things exist, and some even act,
all the time.

In physics, chemistry, biology, economics, medicine, history, football,
tennis, ...) the agents (or processes) act all the time—they don’t
cease to exist, or even go to sleep

(Sequential) Programming is one of the few fields where only one
thing happens at a time.

I Was never really true (interrupts, etc.)

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 13 / 21



Concurrency around us

A concurrent process is an abstraction and actually runs only when
scheduled on to a physical processor by the underlying operating system or
run-time system that implements the process abstraction. Examples:

A legal case once launched is sub judice and mostly just ”stuck in the
courts”. It actually runs only when a hearing is scheduled.

An application made to government is ”under consideration”, but
your file is mostly waiting till an officer has the time for it.

Film often has multiple stories sharing one screen. We return to pick
up a story where we left it or where it has meanwhile got to (you can
see time has passed).

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 14 / 21



Concurrency and non-determinism
Concurrent systems are non-deterministic. Why?

We don’t know if a process is actually running, or just ready to run.

The underlying scheduler might be non-deterministic. We don’t know
who gets to access a shared resource first, or who speaks first.

Which means:

We cannot assume any speed for the process

Or how long it will take to do something

Synchronisation with a process must be explicit

Consequences of non-determinism

Re-running a concurrent program may not produce the same result.

So standard debugging is impossible.

So you must reason about program behaviour.

This can get tedious and error-prone, so we use tools called
model-checkers, proof assistants and theorem provers.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 15 / 21



Tools: simulators

Humans are not good at intuiting the behaviour of systems with many
agents. Simulation is an important tool to show us what might happen
(not what will). Remember the systems are non-deterministic.

We can now run 10 million agents to simulate the spread of infection.
We don’t use 10 million CPUs, far fewer. The scheduling mimics the
non-determinism of reality. (If you are exposed to an infection, you
will catch it with some probability).

Many multi-agent systems show emergent properties. We don’t have
good theories of emergence, but simulations can help us visualise it.1

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 16 / 21



Validation and Verification for Concurrent programs

A sequential program is basically a function from input to output. The
input can all be given at once, at the start.

A concurrent program interacts (communicates) with its environment. Its
behaviour is not a function, but possible conversations. I know my first
utterance, but my second depends on your reply to my first.

What should the system do? Specification (”Spec”)
I Give a set of safety and liveness properties it must satisfy.

What does it do? (Operational) semantics
I The behaviour is a tree of states with branches labelled by I/O actions.

We can still use a reference design as Spec, but now we need relations like
”any behaviour of Sys is also a behaviour of Spec”.

Do you really want Sys to behave as Spec says? is now a hard question,
needing exhaustive simulation and discussion.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 17 / 21



First mention of Linear Temporal Logic (LTL)

LTL is formally a small part of the course, but it is good to at least
understand what the fuss is all about.

An excellent reference (including a review of basic logic) is
ftp://ftp.cs.bham.ac.uk/pub/authors/M.D.Ryan/tmp/Anongporn/Ch1+3.pdf

You won’t need all of it, but an overview will help calm nerves. Better
definitions than in Ben-Ari.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 18 / 21



Tools: model checkers

The model checker SPIN

Checks Promela programs. It checks assertions and more general LTL
formulas, showing where they fail to hold.

I A single state is needed to disprove a safety property. You said ”this
bad thing won’t happen”. Well, here is where it does, and a path to
get there.

I A loop of states is needed to disprove a liveness property. You said
”this good thing will eventually happen”. Well, here is a loop where I
can get stuck and where the good thing never happens.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 19 / 21



Concurrent programming ca. 1955: unit record equipment

Listing 4: Read-process-print sequence

1 wh i l e ({ ”more ca r d s to be read ” })
2 { r e a d i n t o ( x ) ;
3 y = f ( x ) ;
4 p r i n t ( y ) }

Since the reading and writing took about half a second, and the
computation much less, the above ran at maybe 100 records a minute.

But the CDR and LPT ran independently off the buffers x, y. So you
could pipeline: read the third while processing the second and priting the
first. Ran at 200 records a minute. The synchronisation to prevent
overwrites and re-use of old data was by making the CPU wait for half a
second. There was no explicit synch, only estimates of time.

Concurrent programming proper got started in the 1960’s, with the
invention of the semaphore, an abstraction of how to deal with interrupts.
Hardware versions were available as test-and-set instructions.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 20 / 21



O-O and CP

This is a course on the principles of Concurrent Programming (CP, or
more correctly, PCP). It is not a course on doing CP in Java, or even
Erlang (a purpose designed language for telecom applications of CP).

In particular, the O-O aspects of Java are a needless distraction when
discussing CP. For a more general critique of O-O, see

Objects Never? Well, Hardly Ever! By Ben-Ari, Mordechai. in
Communications of the ACM. Sep 2010, Vol. 53 Issue 9, p32-35.

It is at least plausible that embedded software has a much bigger code
base than O-O. Certainly much more safety-critical code.

K. V. S. Prasad (TDA384/DIT391 Principles of Concurrent Programming Chalmers Univ. and Univ. of Gothenburg)Lecture 1: Introduction to Concurrency 2 September 2019 21 / 21


	More practical stuff
	Specification, Validation, Behaviour, and Verification

