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Finite-state models of
concurrency: recap



State/transition diagrams

We capture the essential elements of concurrent programs using
state/transition diagrams (also called: (finite) state automata, (finite)
state machines, or transition systems).

• states in a diagram capture possible program states

• transitions connect states according to execution order

Structural properties of a diagram capture semantic properties of the
corresponding program.
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States

A state captures the shared and local states of a concurrent program:

counter: 0

.2 .4
cnt: 0 cnt: 0

shared state

local state
of thread t,

including pc .

local state
of thread u,

including pc .

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 // terminates

cnt = counter; 4

counter = cnt + 1; 5

// terminates 6
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States

A state captures the shared and local states of a concurrent program:

counter: 0

.2 .4
cnt: 0 cnt: 0

When unambiguous, we simplify a state with only the essential
information:

0
.2 .4
0 0
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Initial states

The initial state of a computation is marked with an incoming arrow:

counter: 0

.1 .4
cnt:⊥ cnt:⊥

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 // terminates

cnt = counter; 4

counter = cnt + 1; 5

// terminates 6
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Final states

The final states of a computation – where the program terminates –
are marked with double-line edges:

counter: 2

.3 .6
done done

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 // terminates

cnt = counter; 4

counter = cnt + 1; 5

// terminates 6
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Transitions

A transition corresponds to the execution of one atomic instruction,
and it is an arrow connecting two states (or a state to itself):

counter: 1

.3 .4
done cnt:⊥

counter: 1

.3 .5
done cnt: 1

u

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 // terminates

cnt = counter; 4

counter = cnt + 1; 5

// terminates 6
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A complete state/transition diagram

The complete state/transition diagram for the concurrent counter
example explicitly shows all possible interleavings:

0
.1 .4
⊥ ⊥

0
.2 .4
0 ⊥

0
.1 .5
⊥ 0

1
.3 .4
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1
.1 .6
⊥

0
.2 .5
0 0

1
.3 .5
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.2 .6
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1
.3 .6

1
.3 .5
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2
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State/transition diagram with locks?

The state/transition diagram of the concurrent counter example using
locks should contain no (states representing) race conditions:

0
.1 .4
⊥ ⊥

0
.2 .4
0 ⊥

0
.1 .5
⊥ 0

1
.3 .4

⊥

1
.1 .6
⊥

1
.3 .5

1
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1

2
.3 .6
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.2 .5
0 0

1
.3 .5

0

1
.2 .6
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Locking

Locking and unlocking are considered atomic operations.

counter: 0, lock: −
.1 .6

cnt:⊥ cnt:⊥

counter: 0, lock: @t

.2 .6
cnt:⊥ cnt:⊥

t

int counter = 0; Lock lock = new ReentrantLock();

thread t thread u

int cnt; int cnt;

1 lock.lock();

2 cnt = counter;

3 counter = cnt + 1;

4 lock.unlock();

5 // terminates

lock.lock(); 6

cnt = counter; 7

counter = cnt + 1; 8

lock.unlock(); 9

// terminates 10

This transition is only allowed if the lock is not held by another thread.
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Semaphores

Acquiring and releasing a semaphore are atomic operations.

counter: 0, sem: 1

.1 .6
cnt:⊥ cnt:⊥

counter: 0, sem: 0

.2 .6
cnt:⊥ cnt:⊥

t

int counter = 0; Lock sem = new Semaphore(1);

thread t thread u

int cnt; int cnt;

1 sem.down();

2 cnt = counter;

3 counter = cnt + 1;

4 sem.up();

5 // terminates

sem.down(); 6

cnt = counter; 7

counter = cnt + 1; 8

sem.up(); 9

// terminates 10

This transition is only allowed if the semaphore’s value is positive.
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Counter with locks: state/transition diagram

The state/transition diagram of the concurrent counter example using
locks contains no (states representing) race conditions:

0, −
.1 .6
⊥ ⊥

0, @t
.2 .6
⊥ ⊥

0, @t
.3 .6
0 ⊥

1, @t
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.4 .10
1

2, −
.5 .10
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Simplifying state/transition diagrams

Tracking every statement can lead to large state diagrams. We can
simplify a diagram by skipping lines irrelevant to concurrent behavior.

0, −
.1 .6
⊥ ⊥

0, @t
.2 .6
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0, @t
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0 ⊥

1, @t
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.5 .6
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skip relevant lines!
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Reasoning about program properties

The structural properties of a diagram capture semantic properties of
the corresponding program:

mutual exclusion: there are no states where two threads are in their
critical section;

deadlock freedom: for every (non-final) state, there is an outgoing
transition;

starvation freedom: there is no (looping) path such that a thread
never enters its critical section while trying to do so;

no race conditions: all the final states have the same result.

Building and analyzing state/transition diagrams by hand quickly
becomes tedious. That’s where formal verification techniques such as
model checking can help.
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Transition tables

Transition tables are equivalent representations of the information of
state/transition diagrams.

CURRENT NEXT WITH t NEXT WITH u
〈0,−, .1,⊥, .6,⊥〉 〈0,@t , .2,⊥, .6,⊥〉 〈0,@u, .1,⊥, .7,⊥〉
〈0,@t , .2,⊥, .6,⊥〉 〈1,−, .5,−, .6,⊥〉 —
〈0,@u, .1,⊥, .7,⊥〉 — 〈1,−, .1,⊥, .10,−〉
〈1,−, .5,−, .6,⊥〉 — 〈1,@u, .5,−, .7,⊥〉
〈1,−, .1,⊥, .10,−〉 〈1,@t , .2,⊥, .10,−〉 —
〈1,@u, .5,−, .7,⊥〉 — 〈2,−, .5,−, .10,−〉
〈1,@t , .2,⊥, .10,−〉 〈2,−, .5,−, .10,−〉 —
〈2,−, .5,−, .10,−〉 — —
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Specification



Writing correct programs

Programming means writing instructions that achieve a certain
functionality. How do we know if a program is correct? And what
does it even mean that a program is correct?

To this end, we distinguish between implementation and specification:

• The implementation is the code that is written, compiled, and
executed.

• The specification is a description of what the program should do,
usually at a more abstract level than the implementation.

Implementation:
void withdraw(int amount) {

balance -= amount;

}

Specification:
method withdraw takes a positive
integer amount not exceeding
balance, and decreases balance

by amount.
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Functional specifications

In sequential programming, we are mainly interested in functional – or
input/output – specifications of individual methods. Such
specifications consist of two parts:

1. precondition: a constraint that defines the method’s valid inputs,
2. postcondition: a functional description of the expected output

after executing the method.

In object-oriented programs, the input and output of a method also
include the object state before and after executing the method.

Implementation:
void withdraw(int amount) {

balance -= amount;

}

Specification:

1. precondition:
0 < amount && amount <= balance

2. postcondition:
“after” balance ==

“before” balance - amount
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Pre/postconditions in Java

Java does not have support for writing pre/postcondition
specifications in the source file.

JML (Java Modeling Language) is a system for annotating Java
programs in special comments.

class BankAccount {

int balance;

//@ requires 0 < amount && amount <= balance;

//@ ensures balance == \old(balance) - amount;

void withdraw(int amount) {

balance -= amount;

}

}
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Invariants

In addition to pre- and postconditions of individual methods,
functional specifications include class invariants, which specify
properties of the state of objects of that class that should always hold
between method calls.

class BankAccount {

int balance;

invariant { balance >= 0 } // balance never negative

// (holds if withdraw is called with amount <= balance)

void withdraw(int amount) {

balance -= amount;

}

void deposit(int amount) {

balance += amount;

}

}
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Specifications of concurrent programs

The specification of concurrent programs should cover two parts:

• a functional specification defines the correct input/output
behavior;

• a temporal specification defines the absence of undesired
behavior, such as no race conditions, deadlock, and starvation.

Functional specification techniques such as pre- and postconditions,
and class invariants are also applicable to concurrent programs.
Class invariants are particularly useful for shared-memory
concurrency, where invariants characterize the valid states of shared
objects.

Temporal specifications require new notations and techniques.
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Temporal logic

Temporal logic was invented by philosophers and later brought to
computer science by Pnueli in the 1970s.

Temporal logic is a notation to specify behavior over time. More
precisely, it formally defines properties of traces of states, like those
that originate from the execution of a (concurrent) program.

Out of the many variants of temporal logic that have been developed,
we present the widely used LTL (Linear Temporal Logic).
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LTL operators

LTL includes all the usual Boolean operators of propositional logic:

FORMULA MEANING

p p is true
¬p p is not true (i.e., false)

p ∧ q p and q are true
p ∨ q p or q is true (or both)
p⇒ q p true implies that q true (if p then q too)

In addition, it has a few temporal operators:

FORMULA MEANING

3p p is eventually true (from now on)
2p p is always true (from now on)

p U q p is true (from now on) until q is true
Xp p is true in the next step
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LTL specifications

When we use LTL to specify properties of concurrent programs,
propositions (like p and q) represent properties of a program’s global
state – including shared memory, and threads’ local memory and
program counters. For example:

PROPOSITION STATE PROPERTY

ct thread t is in its critical section
cu thread u is in its critical section
et thread t is trying to enter its critical section
nt thread t has terminated

With this convention, we can rigorously specify temporal properties.
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LTL specifications: example

In our running example of concurrent increment of counter:
• each thread’s critical section is the whole code it executes
• the global state includes: the value of counter, the values of the

local cnt, and the program counter of each thread

int counter = 0;

thread t thread u

int cnt; int cnt;

1 cnt = counter;

2 counter = cnt + 1;

3 // terminates

cnt = counter; 4

counter = cnt + 1; 5

// terminates 6

PROPOSITION MEANING

t .k thread t is at line k
u .k thread u is at line k

FORMULA DEFINITION

et t .1
ct t .2
nt t .3
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LTL specifications: example with locks

In our running example of concurrent increment of counter:

int counter = 0; Lock lock = new ReentrantLock();

thread t thread u

int cnt; int cnt;

1 lock.lock();

2 cnt = counter;

3 counter = cnt + 1;

4 lock.unlock();

5 // terminates

lock.lock(); 6

cnt = counter; 7

counter = cnt + 1; 8

lock.unlock(); 9

// terminates 10

PROPOSITION MEANING

t .k thread t is at line k
u .k thread u is at line k

FORMULA DEFINITION

et t .1
ct t .2 ∨ t .3 ∨ t .4
nt t .5
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Mutual exclusion in LTL

Mutual exclusion means that no two threads are in the critical section
at the same time. For a program with two threads t and u:

2¬ (ct ∧ cu)

“Always (in every state), it is not the case that
both t and u are in their critical section.”
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Deadlock freedom in LTL

A deadlock occurs when no thread makes progress; thus deadlock
freedom is when some thread makes progress. For a program with
two threads t and u:

PROPOSITION STATE PROPERTY

et thread t is trying to enter its critical section
eu thread u is trying to enter its critical section

2
(
(et ∧ eu)⇒3(ct ∨ cu)

)
“Always, if both t and u are trying to enter their critical sections,

then t or u will eventually (in some future state)
be inside its critical section.”

Or, equivalently: “Not all threads get stuck forever.”
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Starvation freedom in LTL

Starvation occurs when one thread does not make progress; thus
starvation freedom is when all threads make progress. For a program
with two threads t and u, using the same propositions as before:

2
(

et ⇒3ct

)
∧ 2

(
eu ⇒3cu

)
“Always, if t is trying to enter its critical sections, then t will eventually

be inside its critical section; and the same holds for u.”
Or, equivalently: “No threads get stuck forever.”
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Counter without locks: mutual exclusion

Mutual exclusion in writing to counter: 2¬ (ct ∧ cu), with nt denoting
that t is not in its critical section, and nu denoting that u is not in its
critical section.

0
et eu

⊥ ⊥

0
ct eu

0 ⊥

0
et cu

⊥ 0

1
nt eu

⊥

1
et nu

⊥
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nt cu

1

1
ct nu

1

2
nt nu

0
ct cu

0 0

1
nt cu

0

1
ct nu

0

1
nt nu

t

u

t

u

t

u

u

t

t

u

u

t

u

t
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Counter with locks: mutual exclusion

Mutual exclusion in writing to counter: 2¬ (ct ∧ cu), with nt denoting
that t is not in its critical section, and nu denoting that u is not in its
critical section.
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Counter with locks: deadlock and starvation freedom

Deadlock freedom: 2
(
(et ∧ eu)⇒3(ct ∨ cu)

)
Starvation freedom: 2

(
et ⇒3ct

)
∧ 2

(
eu ⇒3cu

)
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Verification



Verification

Verification is the process of checking that a program is correct. This
means that, in addition to the implementation, there is also some form
of specification (possibly only informal).

Two main techniques to do verification:

• testing: run the program using many different inputs and check
that every run satisfies the specification;

• formal verification: mathematically prove that every possible run
of the program satisfies the specification.
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Verification

Testing
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Testing

Testing in a nutshell:

• run the program using many different inputs,

• check that every run satisfies the specification.

Method deposit under test:
class BankAccount {

int balance;

void deposit(int amount);

void withdraw(int amount);

}

Testing code:

BankAccount ba = new BankAccount();

ba.deposit(100);

check(ba.balance == 100);

ba.deposit(20);

check(ba.balance == 100 + 20);

ba.withdraw(11);

check(ba.balance == 100 + 20 - 11);

// ...
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Testing concurrent programs?

Testing is unreliable to find error in concurrent programs because of
nondeterminism: a correct run does not guarantee that some other
run with the same input will also be correct!

public class Counter

implements Runnable

{

// thread’s computation:

public void run() {

int cnt = counter;

counter = cnt + 1;

}

}

Counter c = new Counter();

Thread t = new Thread(c);

Thread u = new Thread(c);

t.start();

u.start();

t.join();

u.join();

check(c.count() == 2);

sometimes it holds, sometimes it fails!
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Testing deadlock freedom?

Besides nondeterminism, there is another problem that occurs if we
try to test temporal properties.

• Testing mutual exclusion: if we run the program and detect that
two threads are in their critical section at the same time, we know
that there is a bug.

• Testing deadlock freedom: if we run the program and detect that
all threads are blocked for, say, one hour, we still cannot be sure
that they will be blocked there forever.

In simple examples, setting an arbitrary timeout may be enough, but
in large systems with massive workloads it may be hard to figure out
how much waiting time is to be expected.

36 / 43



Verification

Model checking
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Safety and liveness properties

The difference between properties such as mutual exclusion and
deadlock freedom is captured by two classes of temporal properties:

Safety properties are violated by a finite trace:

• informally: “nothing bad ever happens”

• example: mutual exclusion – a trace where, at some given time,
two threads are both in their critical section shows that mutual
exclusion does not hold

Liveness properties are violated only by an infinite trace:

• informally: “something good eventually happens”

• example: deadlock freedom – a trace where, from some time on,
all threads are in the same state forever shows that deadlock
freedom does not hold
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Formal verification

Since testing is inadequate to reliably verify concurrent programs,
formal verification is more widely used even if it is generally more
difficult and expensive.

Remember that the specification of concurrent programs consists of
two parts: functional and temporal. Verification proceeds as follows:

• first, prove that the temporal specification is always satisfied,
• then, assume the temporal specification and prove that the

functional specification is always satisfied.

The advantages of this approach include:

• verifying a temporal specification alone often is feasible on
abstract models of programs which ignore details such as the
precise value of all variables;

• if a strong temporal specification holds, we can often verify the
functional specification as if the program were sequential
(because concurrent executions are free from race conditions!)
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Formal verification of the counter

Verifying the concurrent counter:

• to prove mutual exclusion, we only analyze the locking behavior
and ignore the exact value of counter;

• if mutual exclusion holds, the two threads execute run

sequentially, thus we analyze the program as if it were
sequential.

public class Counter

implements Runnable

{

// thread’s computation:

public void run() {

lock();

int cnt = counter;

counter = cnt + 1;

unlock();

}

}

Counter c = new Counter();

Thread t = new Thread(c);

Thread u = new Thread(c);

t.start();

u.start();

t.join();

u.join();

check(c.count() == 2);
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Model checking

Model checking is an effective technique to verify concurrent
programs, first developed in the 1980s.

Model checking mainly targets the verification of temporal
specifications – expressed in temporal logic – about the behavior of
state/transition diagrams – also called transition systems or
finite-state automata:

1. given a concurrent program, build a state/transition diagram
using finitely many states that captures its concurrent behavior

2. model checking algorithms analyze all infinitely many traces of
the state/transition diagram and check whether a given temporal
logic specification holds:

• if model checking is successful, we have verified that all executions
of the program satisfy the temporal specification

• if model checking is unsuccessful, it returns a counterexample – a
concrete trace that shows that the temporal specification is violated
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Model checking in practice

Building a state/transition diagram that correctly captures the
behavior of a concurrent program is something that cannot always be
done automatically. Model checking tools provide convenient
languages to formalize concisely complex state/transition diagrams.

For example, this is a model of the concurrent behavior of the shared
counter in ProMeLa – the input language of the Spin model checker:

int count = 0;

proctype IncThread() {

int tmp; tmp = count; count = tmp + 1;

}

init { // spawn two threads running in parallel

run IncThread(); run IncThread();

}
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Model checking techniques and tools

There are two large families of model-checking techniques and tools:

• Explicit-state model checking works by explicitly exploring the
state space generated by a given state/transition diagram.
Spin is the most popular explicit-state model checker.

• Symbolic model checking works by encoding a given
state/transition diagram using logic formulas (or other specialized
data structures), and then expressing the temporal properties as
logic properties of the encoding.
NuSMV is a state-of-the-art symbolic model checker.

To know more about model checking: course “Formal methods for
software development”
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