
Models and languages
of concurrent computation

Lecture 12 of TDA384/DIT391
Principles of Concurrent Programming

Sandro Stucki

Chalmers University of Technology | University of Gothenburg
SP3 2018/2019

Based on course slides by Carlo A. Furia



Today’s menu

Classifying approaches to concurrency

Message passing models and languages

Ada

Go

SCOOP

MPI

Shared memory models and languages

Linda

OpenMP

Cilk

X10

Other languages for concurrency

1 / 59



Credits

Part of today’s presentation is based on material developed by S. Nanz for the
Concepts of Concurrent Computation course given at ETH Zurich in 2015.

2 / 59



Classifying approaches to
concurrency



Concurrency approaches galore

This course mainly focused on two representative approaches to
concurrent programming:

• shared-memory concurrency with Java threads

• message-passing concurrency with Erlang processes

There are many other variants of concurrency models and languages.
This class gives an overview of a few approaches that are historically
and practically significant.

We try to classify languages according to the features of their
concurrency models. The categories are necessarily fuzzy, because
actual languages often combine different models, but they are useful
to navigate the rich landscape of concurrent and parallel
programming.

3 / 59



Concurrency languages galore

Ada

Polyphonic C# Occam

Go

SCOOP

Erlang Scala

Java/C# threads Cilk Linda

Chapel Fortress X10

MPI

Pthreads

OpenMP

ACTORS

PGAS

MESSAGE PASSING

SHARED MEMORY

LANGUAGES

LIBRARIES

4 / 59



Message passing: synchronous vs. asynchronous

A natural classification of message passing primitives is between
synchronous and asynchronous:

• synchronous: sender and receiver of a message block at the
same time until they have exchanged the message
Examples: phone calls, live TV, Ada (rendezvous)

• asynchronous: sender and receiver of a message need not block
– sending and receiving can occur at different times
Examples: email, movies, Erlang (messages)

Erlang uses asynchronous message passing with mailboxes:

• sending is non-blocking

• receiving is blocking (when no suitable message is available in
the recipient’s mailbox)

5 / 59



Message passing: synchronous vs. asynchronous

A natural classification of message passing primitives is between
synchronous and asynchronous:

• synchronous: sender and receiver of a message block at the
same time until they have exchanged the message
Examples: phone calls, live TV, Ada (rendezvous)

• asynchronous: sender and receiver of a message need not block
– sending and receiving can occur at different times
Examples: email, movies, Erlang (messages)

Erlang uses asynchronous message passing with mailboxes:

• sending is non-blocking

• receiving is blocking (when no suitable message is available in
the recipient’s mailbox)

5 / 59



Shared memory: synchronous vs. asynchronous

For shared-memory models, the distinction between synchronous
and asynchronous is less sharp, and mainly applies to
synchronization primitives:

• synchronous primitives require all synchronizing parties to
convene at a common time
Examples: traditional lectures, barrier synchronization

• asynchronous primitives share information between
synchronizing parties without requiring them to access the
information at the same time
Examples: take-home lab assignments, message boards, Linda

6 / 59



Addressing

Communication requires addresses: identifiers to match senders and
receivers. A natural classification of communication primitives is
according to their usage of addresses:

• symmetric: the sender specifies the receiver, and the receiver
specifies the sender
Examples: email with filtering, communication with channels

• asymmetric: either the sender specifies the receiver, or the
receiver specifies the sender – but not both
Examples: regular mail, phone calls (without caller identification),
Erlang, sockets

• indirect: sender and receiver do not refer to each other directly,
but communicate through an intermediary
Examples: communication with channels, Go, Linda

Erlang uses asymmetric message passing: sending To ! Message

specifies the recipient To; receiving receive Msg -> Msg end need not
specify the sender but only the message content.

7 / 59



Addressing

Communication requires addresses: identifiers to match senders and
receivers. A natural classification of communication primitives is
according to their usage of addresses:

• symmetric: the sender specifies the receiver, and the receiver
specifies the sender
Examples: email with filtering, communication with channels

• asymmetric: either the sender specifies the receiver, or the
receiver specifies the sender – but not both
Examples: regular mail, phone calls (without caller identification),
Erlang, sockets

• indirect: sender and receiver do not refer to each other directly,
but communicate through an intermediary
Examples: communication with channels, Go, Linda

Erlang uses asymmetric message passing: sending To ! Message

specifies the recipient To; receiving receive Msg -> Msg end need not
specify the sender but only the message content.

7 / 59



Message passing models and
languages



Message passing models and
languages

Ada

8 / 59



Ada

Ada is an object-oriented programming language first developed in
1977 by the US Department of Defense to have one unified language
for all software development. It still is under active development.

Ada’s design goals include:

• suitable to build highly reliable systems

• reusable, modular components

• concurrency supported at language level

It introduced several features to programming language practice:

• strong typing and safe pointers

• modularity mechanisms (packages)

• exceptions

• high-level concurrency primitives

9 / 59



Ada

Ada is an object-oriented programming language first developed in
1977 by the US Department of Defense to have one unified language
for all software development. It still is under active development.

Ada is named after Ada Lovelace (1815–1852), often considered the
first programmer (before computers!)

9 / 59



Ada

Ada is an object-oriented programming language first developed in
1977 by the US Department of Defense to have one unified language
for all software development.

Featured in:

(The Matlab code is an anachronism)

9 / 59



Concurrency in Ada

Ada’s support for concurrency includes both synchronous and
asynchronous mechanisms:

• Concurrent execution uses tasks, which communicate via
synchronous message passing using rendezvous

• Protected objects are a shared-memory model which extends
monitors with waiting guards

• The language includes nondeterministic statements

10 / 59



Tasks

Procedures in Ada may include tasks:

• Each task has an interface and an implementation
• When a procedure starts executing, its tasks are implicitly

activated

procedure Meetings is

task Point is

-- task interface

end;

task body Point is

-- task implementation

end Point;

-- rest of procedure

end Meetings;
11 / 59



Rendezvous points

Task coordinate using synchronous primitives called rendezvous:

• Task interfaces declare entry points: actions they synchronize on

• Task implementations use accept statements to indicate where
rendezvous take place

task Point is

entry Meet;

end;

task body Point is

begin

-- before meeting

accept Meet do

-- during meeting

end Meet;

-- after meeting

end Point;

12 / 59



Synchronization using rendezvous

Rendezvous are a synchronous mechanism, where clients
synchronize with tasks by invoking an entry point:

• the client blocks waiting for the task to reach the corresponding
entry point; and resumes after the task has executed the
rendezvous’ body

• a task at an accept statement matches a client that is invoking
the corresponding entry point

task body Point is

begin

-- before meeting

accept Meet do

-- during meeting

end Meet;

-- after meeting

end Point;

-- client

declare

P: Point;

begin

-- wait until P reaches Meet

P.Meet;

-- continue after P executes accept

end;
13 / 59



Rendezvous with parameters

Entry points can include parameters, whose actual values are
exchanged during rendezvous:

task Buffer is

entry Put (Item: in Integer);

entry Get (Item: out Integer);

end;

-- client synchronizing

B.Put(42);

14 / 59



Nondeterminism

Nondeterministic select statements group multiple guarded accept

statements. During a rendezvous, one of the accept statements
whose guard evaluates to true gets nondeterministically executed.

task body Buffer is

begin loop select

when Count < SIZE => -- buffer not full

accept Put (Item: in Integer) do

-- add Item to buffer

end;

or -- when neither full nor empty: nondeterministic choice

when Count > 0 => -- buffer not empty

accept Get (Item: out Integer) do

-- remove item from buffer

end;

end select; end loop;

end Buffer;
15 / 59



Protected objects

Protected objects provide high-level shared-memory concurrency
with features similar to monitors:

• all attributes are private

• procedures, functions, and entries may be public

In a protected object:

• Functions do not modify object state, therefore functions calls
may execute concurrently on the same protected object

• Procedures and entries may modify object state, therefore they
execute with exclusive access to protected objects

• Entries may include guards, which provide a synchronization
mechanism similar to conditional critical regions

16 / 59



Conditional critical regions

A conditional critical region is a critical region with a guard B.
In Java pseudo-code:

synchronized (object) when (B) {

// critical region guarded by B

}

Threads queue to enter a conditional critical region:

• when the lock protecting the region becomes available, the first
thread P in the queue tries to acquire it

• if P ’s guard B to the region evaluates to true, P holds the lock and
enters the critical region

• if P ’s guard B to the region evaluates to false, P releases the lock
immediately and goes back into the queue

17 / 59



Guarded entries – implementing semaphores in Ada

Ada’s protected objects provide conditional critical regions using
guards on entries.

protected type Semaphore is

procedure Up;

entry Down;

function Get_Count

return Natural;

private Count: Natural := 0;

end;

protected body Semaphore is

procedure Up is

begin

Count := Count + 1;

end Up;

-- conditional critical region

entry Down when Count > 0 is

begin

Count := Count - 1;

end Down;

function Get_count

return Natural is

begin

return Count;

end Count;

end Semaphore;

18 / 59



Message passing models and
languages

Go

19 / 59



Go

Go (also called golang) is a procedural programming language first
developed at Google in 2009. It is available as open source.

Go’s main features include:

• static typing with type inference

• a packaging system that integrates with the build system

• memory safety checks performed by the compiler

• concurrency supported at language level with goroutines and
channels

Go’s creators include Ken Thompson and Rob Pike, who were also
main developers of C and Unix in the 1970s.

20 / 59



Concurrency in Go

Go’s support for concurrency includes:

• Goroutines: lightweight processes, similar to Erlang’s processes
but supporting both shared memory and message-passing
communication

• Channels: a buffered mechanism to exchange messages
between goroutines

21 / 59



Goroutines

A goroutine is a lightweight process executing an arbitrary function.

Using the keyword go in front of a regular function call spawns a
goroutines executing that call:

func hello(who string) {

fmt.Println("Hello %s!", who)

}

// spawn two instances of hello,

// printing "Hello world!" and "Hello class!" in any order:

go hello("world")

go hello("class")

Keyword go produces a behavior similar to as Erlang’s spawn.

The name goroutine is a play on the name coroutine, a generalization
of subroutines for concurrency (goroutines can implement
coroutines).

22 / 59



Channels

Goroutines can exchange messages through channels.

Each channel:

• is declared using the modifier channel

• has a type, denoting the type of its messages

• is accessible to goroutines that have a reference to it

• has a finite capacity – zero by default

// a channel ‘stringMsg’ with capacity 0 (default)

// to exchange messages consisting of strings

var stringMsg chan string = make(chan string)

// a channel ‘ints’ with capacity 30

// to exchange messages consisting of integers

var ints chan int = make(chan int, 30)

23 / 59



Message passing through channels

Addressing is indirect in Go: messages are exchanged through
channels, and hence senders and receivers communicate indirectly,
without being explicitly aware of each other.

Sending and receiving are primitives of the language
using the <- operator:

SENDING RECEIVING

ch <- v m := <- ch

send the value of expres-
sion v to channel ch

receive a message from
channel ch and store it in
variable m

24 / 59



Message passing: synchronous vs. asynchronous

Synchronization using message passing behaves differently
according to the capacity of channels:

Channels with capacity zero
(unbuffered) are synchronous:
a receiver evaluating <- ubch

blocks until a value is available
in unbuffered channel ubch;
and a sender evaluating
ubch <- v blocks until a
receiver is available to receive
message v on ubch.

Channels with positive capacity
(buffered) are potentially
asynchronous: a receiver
evaluating <- bch does not
block unless buffered channel
bch is empty; and a sender
evaluating bch <- v does not
block unless bch is full.

Channels store and deliver messages in FIFO (first-in first-out) order;
messages sent to a channel are enqueued in order, and are received
starting from the one that has been in the channel the longest.

25 / 59



Message passing: synchronous vs. asynchronous

Synchronization using message passing behaves differently
according to the capacity of channels:

Channels with capacity zero
(unbuffered) are synchronous:
a receiver evaluating <- ubch

blocks until a value is available
in unbuffered channel ubch;
and a sender evaluating
ubch <- v blocks until a
receiver is available to receive
message v on ubch.

Channels with positive capacity
(buffered) are potentially
asynchronous: a receiver
evaluating <- bch does not
block unless buffered channel
bch is empty; and a sender
evaluating bch <- v does not
block unless bch is full.

Message passing with unbuffered channels is similar to Ada’s
rendezvous; message passing with buffered channels is similar to
Erlang’s send/receive but with finite capacity.

25 / 59



Producer-consumer with bounded buffer in Go

The features of Go buffered channels make it very easy to implement
a producer-consumer with bounded buffer:

const Size = 10 // capacity of buffer

var buffer = make(chan int, Size) // channel with capacity ‘Size’

func put(item int) {

buffer <- item // send item to buffer

} // block if full

func get() (item int) {

return <- buffer // receive item from buffer

} // block if empty

26 / 59



Nondeterminism

The select statement support nondeterministic message reception
from multiple channels. In the following example:

• receive the first message that is available on channels
greetingsCh and goodbyeCh

• block if no messages are available on either channel
• receive from one nondeterministically chosen channel if

messages are available on both channels
• time out after 3 seconds of wait

select {

case m := <- greetingsCh:

fmt.Println("Greetings from %s", m)

case m := <- goodbyeCh:

fmt.Println("Goodbye from %s", m)

case <- time.After(3 * time.Second)

fmt.Println("No messages for 3 seconds")

}
27 / 59



Nondeterminism

The select statement support nondeterministic message reception
from multiple channels.

Blocking and waiting can be avoided completely by adding a default

case, which executes immediately if none of the channels are ready:

select {

case m := <- greetingsCh:

fmt.Println("Greetings from %s", m)

case m := <- goodbyeCh:

fmt.Println("Goodbye from %s", m)

default:

fmt.Println("I'm not waiting for messages!")

}

27 / 59



Message passing models and
languages

SCOOP

28 / 59



SCOOP

SCOOP (Simple Concurrent Object-Oriented Programming) is the
part of the Eiffel programming language that deals with concurrency.

Each object is associated at runtime to a single thread (called
“processor” in SCOOP jargon), which is the sole responsible for
executing calls on the object.

Objects that are associated with different threads are called separate.

The type modifier separate indicates that calls to objects of that type
may be handled by a different thread.

cnt: INTEGER -- run by Current object's thread

shared_counter: separate COUNTER -- may be run by different thread

29 / 59



Method calls

Method calls are implicit synchronization events in SCOOP.

The call o.m of procedure method m on object o:

• is synchronous if o has type not separate

• may be asynchronous if o has type separate

If m is a function (returning a value), the call blocks until the result is
computed – that is it behaves like a non-separate call.

A call o.m is executed by the single thread handling object o:

• the client’s thread sends a message to o’s handler, requesting to
execute m

• the client request is added to a queue in o’s handler

• if m is a function, after o’s handler gets to execute m, it sends the
results back to the client

This explains how SCOOP uses message-passing concurrency.
30 / 59



Atomic method calls

Before a method starts executing, it gets exclusive access to all its
separate arguments. This makes it easy to ensure that methods
execute atomically:

-- transfer ‘amount’ from ‘source’ to ‘target’

transfer (source, target: separate BANK_ACCOUNT; amount: INTEGER)

do -- lock both ‘source’ and ‘target’ before proceeding

source.withdraw(amount)

target.deposit(amount)

end

31 / 59



Assertions: preconditions and postconditions

Eiffel supports assertions such as pre- and postconditions:

preconditions: a call o.m (a) to method m is valid only if o and a

satisfy m’s precondition

postconditions: the implementation of a method m is correct only if
every valid call o.m (a) terminates in a state where o

satisfies m’s postcondition

withdraw (amount: NATURAL)

require -- precondition: cannot withdraw more than ‘balance’

amount <= balance

do

balance := balance - amount

ensure -- postcondition: ‘balance’ is decreased by ‘amount’

balance = old balance - amount

end

32 / 59



Preconditions as waiting conditions

Preconditions that refer to separate arguments double as waiting
conditions in SCOOP:

class PRODUCER

put (b: separate BUFFER;

item: INTEGER)

-- wait until b not full

require

not b.is_full

do

b.append (item)

end

end

class CONSUMER

get (b: separate BUFFER)

: INTEGER

-- wait until b not empty

require

not b.is_empty

do

Result := b.remove

end

end

33 / 59



Message passing models and
languages

MPI

34 / 59



MPI

MPI (Message Passing Interface) is an API specification for
inter-process message-passing, initially developed in the early 1990s.

MPI is the dominant standard in high-performance computing. MPI
mainly targets parallel programs on distributed-memory systems –
multi-processor systems where each processor has its own memory –
although it is routinely used on shared-memory architectures as well.

MPI is portable:

• available as a library for many languages

• high-performance implementations in C/C++ and Fortran

• implementations for many different computer architectures

35 / 59



Process ranks

MPI supports multiple styles of programs; the most common one is
SPMD (single program, multiple data): multiple processes execute
the same program on different processors and different portions of
the input.

Each process has a rank, which is an integer identifier ranging
from 0 to num_procs - 1, where num_procs is the total number of
processes. MPI programs assign tasks to different processes
according to their rank.

36 / 59



Hello world in MPI for C

Process with rank 0 prints messages received from other processes.
char message[256]; int my_rank, num_procs, other_rank;

MPI_Init(&argc, &argv); // initialize MPI

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // get my rank

MPI_Comm_size(MPI_COMM_WORLD, &num_procs); // number of processes

// different behavior according to rank

if (my_rank != 0) { // send message to process 0

sprintf(message, "Hello from #%d!", my_rank);

MPI_Send(message, sizeof(message), MPI_CHAR, 0,

0, MPI_COMM_WORLD);

} else { // proc 0: receive messages from other processes

for (other_rank = 1; other_rank < num_procs; other_rank++) {

{ MPI_Recv(message, sizeof(message), MPI_CHAR, other_rank,

0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("%s\n", message); }

}

MPI_Finalize(); // shut down MPI
37 / 59



Shared memory models and
languages



Shared memory models and
languages

Linda

38 / 59



Linda

Linda is a coordination language developed in 1985 by Gelernter and
Carriero. Using a coordination language means splitting the features
of a concurrent programming language in two parts:

• a computation language, which executes computations
sequentially

• a coordination language, which supports creating concurrent
processes and synchronizing them

Linda is a set of primitives that define a coordination language based
on the notion of tuple space: shared memory is organized in tuples
which can be stored and retrieved by processes

39 / 59



Tuple spaces

A tuple space is a shared collection of tuples of any size and type:

[
〈count, 3〉 〈birthday, 20, January〉 〈1, 1, 2, 3, 5, 8〉

]
Multiple copies of the same tuple may exist in a tuple space.

The metaphor of the message board helps us understand the
primitives used to access a tuple space:

out(a1, . . . ,an) write tuple post message to board
in(a1, . . . ,an) read and remove tuple remove message from board
read(a1, . . . ,an) read tuple read message from board
eval(P) start new process —

Operations in and read pattern match on their arguments, and block
until a matching tuple is in the space (similarly to Erlang’s receive but
on shared memory); when multiple tuples match, one is chosen
nondeterministically.

40 / 59



Implementing semaphores in Linda

A counting semaphore can be implemented by putting as many
copies of tuple 〈"semaphore", id〉 as the semaphore’s count, where id
is a unique identifier of the semaphore instance.

public class TupleSemaphore implements Semaphore {

// initialize with capacity tuples

TupleSemaphore(int capacity)

{ for (int i = 0; i < capacity; i++) up(); }

// add a copy of the tuple; do not block

void up()

{ out("semaphore", hashCode()); }

// remove a copy of the tuple; block if no tuples are in the space

void down()

{ in("semaphore", hashCode()); }

}

41 / 59



Shared memory models and
languages

OpenMP

42 / 59



OpenMP

OpenMP (Open Multi-Processing) is an API specification for
shared-memory multi-threaded programming, initially developed in
the late 1990s.

OpenMP mainly targets fork/join parallelism and numerical
programming. It includes parallel extensions of loops, which support
incrementally adding parallelism to sequential programs. The
extensions are available as pre-processor macros, which are ignored
by a compiler without OpenMP support.

Implementations of the OpenMP API are available in C/C++ and
Fortran.

43 / 59



Fork/join parallelism

OpenMP’s programs follow the fork/join model of parallelism:

• a master thread spawns parallel threads when needed, waits for
them to terminate, and combines their results

• the overall program alternates sequential and parallel phases

fork

fork
done

done

done

seqseqseq join

join

seq

44 / 59



Data parallelism

With data parallelism, parallel threads process disjoint portions of the
input data – typically stored in arrays or matrices:

• parallel forks new threads

• parallel for and do loops assign work to the running threads and
join their results

#pragma omp parallel

{

#pragma omp for

{

for (i = 0; i < 12; i++)

c[i] = a[i] + b[i];

}

}

pragma omp for

i = 0, 1

2, 3

i = 4, 5

6, 7

i = 8, 9

10, 11

pragma omp parallel

implicit join

45 / 59



Task parallelism

With task parallelism, parallel threads compute different functions of
the input:

• parallel sections forks new threads

• section assigns a piece of code to one of the parallel threads

#pragma omp parallel sections

{ // compute a, b, c in parallel

#pragma omp section

a = computeA();

#pragma omp section

b = computeB();

#pragma omp section

c = computeC();

} // implicit join

return combine(a, b, c);

46 / 59



Clauses

Synchronization between parallel threads can be specified indirectly
using clauses:

• private(x): each thread has a private copy of variable x (counter
loop variables are private by default; other variables are shared
by default)

• critical: the block is executed by at most one thread at a time

• schedule(type, chunk): set the way work is split and assigned to
threads:

• type static: each thread gets chunk iterations per round
• type dynamic: threads that finish earlier may get more iterations
• type guided: chunk size decrements exponentially (but won’t be

smaller than chunk)

47 / 59



Shared memory models and
languages

Cilk

48 / 59



Cilk

Cilk is a language extension to C/C++ for shared-memory
multi-threaded programming, initially developed in the mid 1990s.

Cilk targets fork/join parallelism by extending C/C++ with just few
constructs:

• programmers indicate what can be executed in parallel

• the runtime environment allocates work to threads using work
stealing

• a Cilk program stripped of all Cilk keywords is a valid sequential
C/C++ program

A commercial Cilk implementation is distributed by Intel.

49 / 59



Cilk keywords

Cilk adds only few keywords to C/C++:

• spawn f(): the call f() can be run in parallel

• sync: wait until all parallel calls have completed

• cilk: declares a function that may use Cilk constructs (not used
in recent versions of Cilk)

cilk int fibonacci(int n) { // compute n-th fibonacci number

if (n < 2) return n;

else {

int x, y;

x = spawn fibonacci(n - 1); // can fork

y = spawn fibonacci(n - 2); // can fork

sync; // wait for x and y

return x + y;

}

}

50 / 59



Shared memory models and
languages

X10

51 / 59



PGAS

PGAS (Partitioned Global Address Space) is a shared-memory
computer architecture:

• each processor has its local memory

• all local memories share a global address space

Thus, every processor can read and write any other processor’s
memory in the same way it accesses its local memory.

P1’s memory

· · ·Processor P1

Pn’s memory

Processor Pn

52 / 59



X10

X10 is an object-oriented language for multi-threaded programming
on PGAS, developed in 2004 by IBM.

X10 supports asynchronously creating threads that work on places –
a memory partition where a bunch of threads operate.

53 / 59



Fork/join operations

The operations async and finish support fork/join parallelism:

• async { B }: asynchronously spawn a thread executing block B

• finish { B }: execute block B and wait until all threads spawned
in B have terminated

class Fibonacci {

public static def fibonacci(n: Int): Int {

if (n < 2) return n;

val x: Int; val y: Int;

finish {

async x = fibonacci(n - 1);

async y = fibonacci(n - 2);

} // x and y are available

return x + y;

}

}

54 / 59



Critical regions

Other operations define critical regions:

• atomic { B }: execute block B atomically; B must be nonblocking,
sequential, and only access data in local memory

• when (C) { B }: define B as a critical region with blocking
condition C; B and C must be nonblocking, sequential, and only
access local data (C should also be without side effects)

class Buffer[T] {

private var buffer: List[T];

private var count: Int;

def put(item: T)

{ atomic {buffer.add(item); count += 1;}}

def get(): T

{ when (!buffer.isEmpty()) {count -= 1; return buffer.remove();}}

}
55 / 59



Code mobility

The construct at (p) { B } supports executing code at a different
location:

• suspend execution in the current place

• transmit code B and the data it uses to place p

• execute B at place p and wait for termination

• if B is an expression, transmit result back

class Counter {

private var count: Int;

def this(n: Int)

{ count += n; }

}

// somewhere else in the code

def increment(cnt: GlobalRef[Counter]) {

// increment cnt by 1 at its place

at (cnt.home) cnt(1);

}

56 / 59



Other PGAS languages

X10 was developed in a US Department of Defense project about
novel languages for supercomputing. Other similar languages were
developed in the same project:

• Chapel by Cray

• Fortress by Sun – based on Fortran

Other preexisting PGAS languages follow more standard models of
parallelism:

• UPC (Unified Parallel C)

• CAF (Coarray Fortran)

• Titanium – a dialect of Java

57 / 59



Other languages for
concurrency



But wait – there’s more!

Developing models and languages for concurrent programming that
are practical and efficient is still a very active research area.

A few other widely used languages/libraries:

• Pthreads (POSIX threads) are the standard API for
shared-memory thread programming in C/C++. They provide
features similar to Java/C# threads.

• C# threads are very close to Java’s. C# also includes features for
fork/join parallelism (async and await keywords).

58 / 59



But wait – there’s more!

Some other niche/experimental approaches:

• Occam is a language using message-passing communication
with channels; it follows the theoretical model of the process
algebra CSP (Communicating Sequential Processes)

• Polyphonic C# is an extension of C# with asynchronous methods
and chords – a feature to combine the results of asynchronous
methods

• The developers of C# experimented with several high-level
concurrency models, including a form of transactions using LINQ
(Language Integrated Query, which introduced functional
features in C#). If you are interested in some details: http:
//joeduffyblog.com/2016/11/30/15-years-of-concurrency/.

59 / 59

http://joeduffyblog.com/2016/11/30/15-years-of-concurrency/
http://joeduffyblog.com/2016/11/30/15-years-of-concurrency/


These slides’ license

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

	Classifying approaches to concurrency
	Message passing models and languages
	Ada
	Go
	SCOOP
	MPI

	Shared memory models and languages
	Linda
	OpenMP
	Cilk
	X10

	Other languages for concurrency

