

UNIVERSITY OF GOTHENBURG

Practical information

Lecture 0 of TDA384/DIT391 Principles of Concurrent Programming

K V S Prasad

Chalmers University of Technology | University of Gothenburg SP1 2019/2020

Make sure to regularly check the Canvas room and course website:

Canvas announcements, discussion forum. CTH login https://canvas.chalmers.se/courses/7493/ GU login https://canvas.gu.se/courses/12523~7493/ Website lectures, labs, exams, ... http://www.cse.chalmers.se/edu/course/TDA384_LP1/

These are the primary sources of information about the course.

Use the Canvas discussion forum for questions and discussions of general interest to the course:

https://canvas.chalmers.se/courses/7493/discussion_topics https://canvas.gu.se/courses/12523~7493/discussion_topics

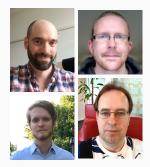
The forum URL is of course linked from the course website.

Use the Canvas discussion forum for questions and discussions of general interest to the course:

https://canvas.chalmers.se/courses/7493/discussion_topics https://canvas.gu.se/courses/12523~7493/discussion_topics

The forum URL is of course linked from the course website.

III Do not share solutions to labs on Canvas (or anywhere else) III


Course responsibles

Examiner K.V.S. Prasad Lecturer Nir Piterman

Teaching assistants (TAs)

- Sandro Stucki
- Herbert Lange
- Matthías Páll Gissurarson
- Ken Bäcklund

- 1. ask them during the lectures and lab sessions,
- 2. post them in the discussion forum on Canvas,
- 3. send an email to pcp-teachers@lists.chalmers.se,
- 4. book an appointment with the teacher or TAs (by email).

Protip: options 1 & 2 are quicker than options 3 & 4.

Chalmers student representatives

- Johannes Binde, binde@student.chalmers.se
- Thomas Frödin Larsson, frodin@student.chalmers.se
- David Hedgren, davhedg@student.chalmers.se
- Pontus Johansson, ponjo@student.chalmers.se
- Axel Karlsson, axeka@student.chalmers.se
- Markus Pettersson, markp@student.chalmers.se
- Henrik Valter, valterh@student.chalmers.se

GU student representatives

- Sophia Pham, gusphaso@student.gu.se
- Isabella Fransson, gusisabefr@student.gu.se
- Johan Berg, gusberjofx@student.gu.se
- Mirai Ibrahim, gusibrmi@student.gu.se
- Johanna Thall, gusthalljo@student.gu.se
- Irja Vuorela, gusvuoir@student.gu.se

By the end of the course you should be able to

- understand the problems common to concurrent and parallel systems,
- demonstrate techniques and patterns to reason about and write correct and efficient concurrent programs,
- apply those techniques and patterns in modern programming languages.

- Introduction to concurrency.
- Part 1. Classic, shared-memory concurrency in Java:
 - · java threads,
 - · locks, semaphores, and monitors.
- Part 2. Message-passing concurrency:
 - Erlang and the actor model.
- Part 3. Parallelizing computations:
 - · fork/join parallelism,
 - · lock-free programming.

Lectures

0	Promela bootcamp	2 September 2019
1	Introduction to concurrent programming	2 September 2019
2	Races, locks, and semaphores	6 September 2019
3	Models of concurrency & synchronization algorithms	9 September 2019
4	Synchronization problems with semaphores	12 September 2018
5	Monitors & Java concurrency tutorial	13 September 2018
6	Introduction to functional programming in Erlang	16 September 2018
	Erlang Tutorial	20 September 2019
7	Message-passing concurrency in Erlang	23 September 2019
8	Synchronization problems with message passing	27 September 2019
9	Parallelizing computations	30 September 2019
10	Parallel linked lists	4 October 2019
11	Lock free programming	7 October 2019
	Guest lecture	14 October 2019
12	Models and languages of concurrent computation	18 October 2019
13	Verification of concurrent programs & course recap	21 October 2019
14	Formal reasoning examples and proofs & exam prep.	25 October 2019

Make sure to check the up-to-date schedule on the website.

There will be three labs – one for each part of the course.

- 1. Trainspotting (Java)
- 2. CCHAT (Erlang)
- 3. A-mazed (Java)

Descriptions of the labs, deadlines, and rules are on the website.

- Register your group (2 students) in Fire.
- Make sure to check the lab/room schedule on the website.

There will be three labs – one for each part of the course.

- 1. Trainspotting (Java)
- 2. CCHAT (Erlang)
- 3. A-mazed (Java)

Descriptions of the labs, deadlines, and rules are on the website.

- Register your group (2 students) in Fire.
- Make sure to check the lab/room schedule on the website.

!!! Do not share solutions to labs on Canvas (or anywhere else) !!!

Lecture slides: on the website.

Books:

- Ben-Ari: *Principles of concurrent and distributed programming*, 2nd edition.
- Hébert: Learn you some Erlang for great good (free online),
- Herlihy & Shavit: The art of multiprocessor programming

Exam

- · Open-book exam:
 - max. 2 textbooks,
 - max. 4 two-sided A4 sheets of notes (printed or handwritten),
 - an English dictionary.
- All topics in the lectures can be examined (except the guest lecture).
- See exams of previous years for examples (on the website).
- Exam dates:
 - · to be announced later,
 - 26 October 2019, 14:00-18:00,
 - 9 January 2020, 14:00–18:00 (re-exam),
 - · check the website for updates!
- Exam grading: see the course website.

- Install Java and Erlang/OTP on your computers.
- Try out the examples presented in class; the complete examples will be available on the website for each lecture.
- Lab 1 (Trainspotting) requires a simulator, which runs on the lab computers (Unix/Linux workstations).
- · See the course website for instructions on how to
 - use the lab computers, and
 - set up Java & Erlang/OTP on your own computers.

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.