Chalmers | GOTEBORGS UNIVERSITET

Concurrent Programming TDA383/DIT390
Tuesday, 19 December 2017

Teacher/examiner: K. V. S. Prasad (prasad@chalmers.se, 0736 30 28 22)

Answer sheet

Question 1. (Part a). pl,ql,q2,q93,p2,p3,q4,pl,ql. (2p)
(Part b). pl,p2,p3,(pl,p2,p3,q1,42,q3)* (3p)
(Part ¢). pl,ql,q2,q93,q4,p2,p3* — Also correct solution for b) (3p)

Question 2. (Parts a through c). (12p)

\begin{verbatim}
import java.util.concurrent.Semaphore;

class BuildingFirm {

// Constant
final int NUM_SPECIALISTS = 2;

// Semaphore definitions
Semaphore start = new Semaphore(0);
Semaphore done = new Semaphore(0);

class TeamManager extends Thread {
public void run() {
while(true) {

for (int i = 0; i<NUM_SPECIALISTS; i++) {
start.release();

}

for (int i = 0; i<NUM_SPECIALISTS; i++) {
done.acquire();

class Worker extends Thread {
public void run() {
while(true) {
start.acquire();
// Do some work
done.release();

public static void main(String[] args) {
for (int i = 0; i<NUM_SPECIALISTS; i++) {
new Worker().start();

}

new TeamManager () .start();

}

(Part d). The simplest way to do this with binary semaphores is

Question 3.

Question 4.

to declare arrays of binary semaphores start and done, one array
element per worker. When a house is completed, the manager signals
all the starts, and then waits for each done semaphore in the array
order (even if the workers don’t finish in that order).

(3p)
(Part a) (5p)
State = (pi, qi, Svalue) | next state if p moves | next state if ¢ moves
sl | (p2, g2, 0) (p3, q2, 2)=s2 (p2, g3, 5)=s3
s2 | (p3, g2, 2) (p5, g2, 2)=s4 (p3, g3, 7)=sb
s3 | (p2, g3, 5) (p3, g3, 3)=s6 (p2, g5, 5)=s7
s4 | (pb, g2, 2) (p2, 2, 0)=sl (p5, q3, 7)=s8
s5 | (p3,4q3,7) (p5, q3, 7)=s8 no move
s6 | (p3, g3, 3) no move (p3, a5, 3)=s9
s7 | (p2, g5, 5) (p3, g5, 3)=s9 (p2, q2, 4)=s10
s8 | (ph, a3, 7) (p2, g3, 5)=s3 no move
s9 | (p3, g5, 3) no move (p3, 92, 2)=s3
s10 | (p2, 92, 4) (p3, q2, 2)=s2 (p2, g3, 5)=s3
(Part b) There is no state with (p5, g5, sn). (2p)

(Part c) There is no state where neither p nor q has a move. (2p)

(Part a). To get to (p3 A ¢3), assume p got to p3 (so S = 2 or 3) and
is waiting when q executes 2, giving S=7. If q got to g3 first, S=5 or

7, and then after p2, S=3. (4p)
(Part b) Immediate given the assumption. After q5, S=2 and p can
get past p3. (2p)

(Part c¢) Again immediate, given the assumption. If p3 executes,
which it must if the scheduler is fair, then p gets to p5. Points for
knowing what box and diamond and fairness mean. (3p)

Question 5. (Part a). (2p)

init_graders(0) -> ok ;
init_graders(N) ->
spawn(fun() -> grader() end),
init_graders(N-1).

(Part b). (8p)

grader() ->
examiner ! {idle, self()},
receive
finished -> ok ;
{grade, Exam} ->
examiner ! {ready, grade(Exam)},
grader ()
end.

(Part c). The message passing is synchronous. The examiner is
blocking while the grader is blocking. Only one worker is working at
any given time. (2p)

(Part d). Improvement: the communication is now asynchronous and
multiple workers can run simultaneously because the examiner doesn’t
block. [1 point]

Problem: the same ungraded exam could be given to multiple graders,
resulting in duplication of work, since the examiner does not keep track
of which exams are pending. (Although if you assume get_ungraded_exam
does take this into account, then that should be ok). [2 points] (3p)

Question 6. (Part a). (10p)

1 class Table {

2 Lock lock = new ReentrantLock();
3 Condition wait = lock.newCondition ();
4

5 int cookies:

6

7 Table (int c) { this.cookies = c;
8 }

9

10 int howManylLeft() {

11 try {

12 lock . lock ();

13 return cookies;

14 + finally {

15 lock .unlock ();

16 }

17}

18

19 void get() throws InterruptedException {
20 try {

21 lock . lock ();

22 while (cookies <= 0)

23 wait.await ();

24 cookies —= 1;

25 + finally {

26 lock .unlock ();

27 }

28}

29

30 wvoid refill (int i) {

31 try {

32 lock . lock ();

33 cookies += 1i;

34 + finally {

35 wait.signalAll();

36 lock .unlock ();

37 }

38}

39 }

(Part b). Yes, because multiple threads will get howManyLeft ()==0
before the first has time to bake more. Suggestions: (1) make howManyLeft
block after first time returning 0, (2) add a shallIBake method in
Table which only assigns baking task to one caller. (4p)

