Formal Methods for Software Development Reasoning about Programs with Loops and Method Calls

Wolfgang Ahrendt

22 October 2019

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

$$
\Gamma \Longrightarrow\langle i=j++; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- decomposition of complex statements into simpler ones

$$
\frac{\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(j>10)\{o k=t r u e ;\} \ldots\rangle \phi}{\Gamma \Longrightarrow\langle i=j++; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- decomposition of complex statements into simpler ones
- simple assignment to update

Program Logic Calculus－Repetition

Calculus realises symbolic interpreter：
－decomposition of complex statements into simpler ones
－simple assignment to update
－update captures accumulated effect

$$
\Gamma \Longrightarrow\{t:=j\|j:=j+1\| i:=j\}\langle i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi
$$

$$
\begin{aligned}
& \Gamma \Longrightarrow\{t:=\mathrm{j}\}\langle\mathrm{j}=\mathrm{j}+1 \text {;i=t;if(j>10)\{ok=true;\}...〉申} \\
& \Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(j>10)\{o k=t r u e ;\} \ldots\rangle \phi \\
& \Gamma \Longrightarrow\langle i=j++; i f(j>10)\{o k=t r u e ;\} \ldots\rangle \phi
\end{aligned}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- decomposition of complex statements into simpler ones
- simple assignment to update
- update captures accumulated effect (abbr. w. \mathcal{U})

$$
\Gamma \Longrightarrow\{\mathcal{U}\}\langle\text { if }(j>10) \text { \{ok=true } ;\} \ldots\rangle \phi
$$

$$
\begin{gathered}
\hline \Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(j>10)\{\text { ok=true }\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi
\end{gathered}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- decomposition of complex statements into simpler ones
- simple assignment to update
- update captures accumulated effect
- control flow branching induces proof splitting
'branch1' $\Gamma,\{\mathcal{U}\}(j>10) \Longrightarrow\{\mathcal{U}\}\langle\{$ ok=true $;\} \ldots\rangle \phi$
'branch2' $\Gamma,\{\mathcal{U}\} \neg(\mathrm{j}>10) \Longrightarrow\{\mathcal{U}\}\langle\ldots\rangle \phi$
$\Gamma \Longrightarrow\{\mathcal{U}\}\langle$ if $(\mathrm{j}>10)$ \{ok=true; $\} \ldots\rangle \phi$

$$
\frac{\Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi}{\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- decomposition of complex statements into simpler ones
- simple assignment to update
- update captures accumulated effect
- control flow branching induces proof splitting
- application of update computes weakest precondition

$$
\begin{gathered}
\text { 'branch1' } \Gamma, j+1>10 \Longrightarrow\{\mathcal{U}\}\langle\{\text { ok=true } ;\} \ldots\rangle \phi \\
\text { 'branch2' } \Gamma, \neg(j+1>10) \Longrightarrow\{\mathcal{U}\}\langle\ldots\rangle \phi \\
\Gamma \Longrightarrow\{\mathcal{U}\}\langle\mathbf{i f}(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi
\end{gathered}
$$

$$
\begin{gathered}
\hline \Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(j>10)\{\text { ok=true }\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi
\end{gathered}
$$

Program Logic Calculus - Repetition

Calculus realises symbolic interpreter:

- decomposition of complex statements into simpler ones
- simple assignment to update
- update captures accumulated effect
- control flow branching induces proof splitting
- application of update computes weakest precondition

$$
\Gamma^{\prime} \Longrightarrow\left\{\mathcal{U}^{\prime}\right\} \phi
$$

$$
\begin{gathered}
\text { 'branch1' } \Gamma, \mathrm{j}+1>10 \Longrightarrow\{\mathcal{U}\}\langle\text { \{ok=true } ;\} \ldots\rangle \phi \\
\text { 'branch2' } \Gamma, \neg(\mathrm{j}+1>10) \Longrightarrow\{\mathcal{U}\}\langle\ldots\rangle \phi \\
\Gamma \Longrightarrow\{\mathcal{U}\}\langle\text { if }(\mathrm{j}>10)\{\text { ok=true } ;\} \ldots\rangle \phi \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
\hline \Gamma \Longrightarrow\{t:=j\}\langle j=j+1 ; i=t ; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle t=j ; j=j+1 ; i=t ; i f(j>10)\{\text { ok=true }\} \ldots\rangle \phi \\
\Gamma \Longrightarrow\langle i=j++; i f(j>10)\{\text { ok=true } ;\} \ldots\rangle \phi
\end{gathered}
$$

Method Call: Example

\javaSource "src/";
\programVariables\{
Person p;
int j;
\}
\problem \{
(\backslash forall int i;
(! $p=n u l l$->
$(\{j:=i\} \backslash<\{p . \operatorname{set} \operatorname{Age}(j) ;\} \backslash>(p . a g e=i))))$
\}

Method Calls

Method Call with actual parameters $\arg _{0}, \ldots, \arg \boldsymbol{n}_{n}$

$$
\left\langle o . m\left(\arg _{0}, \ldots, \arg _{n}\right) ; \omega\right\rangle \phi
$$

assume m declared as void $m\left(\tau_{0} \mathrm{p}_{0}, \ldots, \tau_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}\right)$

Method Calls

Method Call with actual parameters $\arg _{0}, \ldots, \arg \boldsymbol{n}_{n}$

$$
\left\langle o . m\left(\arg _{0}, \ldots, \arg _{n}\right) ; \omega\right\rangle \phi
$$

assume m declared as void $m\left(\tau_{0} \mathrm{p}_{0}, \ldots, \tau_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}\right)$

Actions of rule methodCall

1. Declare new local variables $\mathrm{p} \# \mathrm{i}$, initialize them with actual parameter: $\tau_{i} \mathrm{p} \# \mathrm{i}=\arg _{i}$;

Method Calls

Method Call with actual parameters $\arg _{0}, \ldots, \arg _{n}$

$$
\left\langle o . m\left(\arg _{0}, \ldots, \arg _{n}\right) ; \omega\right\rangle \phi
$$

assume m declared as void $m\left(\tau_{0} \mathrm{p}_{0}, \ldots, \tau_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}\right)$

Actions of rule methodCall

1. Declare new local variables $\mathrm{p} \# \mathrm{i}$, initialize them with actual parameter: $\tau_{i} \mathrm{p} \# \mathrm{i}=\arg _{i}$;
2. Look-up implementing class C of m; split proof if implementation cannot be uniquely determined.

Method Calls

Method Call with actual parameters $\arg _{0}, \ldots, \arg g_{n}$

$$
\left\langle o . m\left(\arg _{0}, \ldots, \arg _{n}\right) ; \omega\right\rangle \phi
$$

assume m declared as void $m\left(\tau_{0} \mathrm{p}_{0}, \ldots, \tau_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}\right)$

Actions of rule methodCall

1. Declare new local variables $\mathrm{p} \# \mathrm{i}$, initialize them with actual parameter: $\tau_{i} \mathrm{p} \# \mathrm{i}=\arg _{i}$;
2. Look-up implementing class C of m; split proof if implementation cannot be uniquely determined.
3. Replace method call with implementation invocation o.m(p\#0,..., p\#n)@C

Method Calls Cont'd

After executing the initialisers: $\quad \tau_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i} ; \quad$ apply:

Method Body Expand

Rule methodBodyExpand (simplified)

$$
\frac{\Gamma \Longrightarrow\left\langle\text { method-frame }\left(\text { source }=\mathrm{m}\left(\tau_{0}, \ldots, \tau_{n}\right) @ C, \text { this }=0\right):\{\text { body }\}\right\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\mathrm{o} \cdot \mathrm{~m}(\mathrm{p} \# 0, \ldots, \mathrm{p} \# \mathrm{n}) @ \mathrm{C} ; \omega\rangle \phi, \Delta}
$$

1. Replaces method invocation by method frame with method body
2. Renames p_{i} in body to $\mathrm{p} \# \mathrm{i}$

Method Calls Cont'd

After executing the initialisers: $\quad \tau_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i} ; \quad$ apply:

Method Body Expand

Rule methodBodyExpand (simplified)

$$
\frac{\Gamma \Longrightarrow\left\langle\text { method-frame }\left(\text { source }=\mathrm{m}\left(\tau_{0}, \ldots, \tau_{n}\right) @ C, \text { this }=0\right):\{b o d y\} \omega\right\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\text { o.m }(\mathrm{p} \# 0, \ldots, \mathrm{p} \# \mathrm{n}) @ C ; \omega\rangle \phi, \Delta}
$$

1. Replaces method invocation by method frame with method body
2. Renames p_{i} in body to $\mathrm{p} \# \mathrm{i}$

Method frames:
Required in proof to represent call stack

Method Calls Cont'd

After executing the initialisers: $\quad \tau_{\mathrm{i}} \mathrm{p} \# \mathrm{i}=\arg _{i} ; \quad$ apply:

Method Body Expand

Rule methodBodyExpand (simplified)

$$
\frac{\Gamma \Longrightarrow\left\langle\text { method-frame }\left(\text { source }=\mathrm{m}\left(\tau_{0}, \ldots, \tau_{n}\right) @ C, \text { this }=0\right):\{\text { body }\}\right\rangle \phi, \Delta}{\Gamma \Longrightarrow\langle\text { o.m }(\mathrm{p} \# 0, \ldots, \mathrm{p} \# \mathrm{n}) @ C ; \omega\rangle \phi, \Delta}
$$

1. Replaces method invocation by method frame with method body
2. Renames p_{i} in body to $\mathrm{p} \# \mathrm{i}$

Method frames:
Required in proof to represent call stack

Demo

methods/instanceMethodInlineSimple.key
methods/inlineDynamicDispatch.key

Localisation of Fields and Method Implementations

Java has complex rules for localisation of fields and method implementations

- Overloading
- Late binding (dynamic dispatch)
- Scoping (class vs. instance)
- Visibility (private, protected, public)

Proof split into cases if implementation not statically determined

Object initialization

Java has complex rules for object initialization

- Chain of constructor calls until Object
- Implicit calls to super()
- Visibility issues
- Initialization sequence

Coding of initialization rules in methods <createObject>(), <init>(),... which are then symbolically executed

Limitations of Method Inlining: methodBodyExpand

- Source code might be unavailable
- API method implementation vendor-specific
- Source code often unavailable for commercial APIs
- Method is invoked multiple times in a program
- Avoid multiple symbolic execution of identical code
- Cannot handle unbounded recursion
- Not modular:

Changing a method requires re-verification of all callers

Limitations of Method Inlining: methodBodyExpand

- Source code might be unavailable
- API method implementation vendor-specific
- Source code often unavailable for commercial APIs
- Method is invoked multiple times in a program
- Avoid multiple symbolic execution of identical code
- Cannot handle unbounded recursion
- Not modular:

Changing a method requires re-verification of all callers

Use method contract instead of method implementation:

1. Show that requires clause is satisfied before method call
2. Remove method call, and:

- assume ensures clause
- forget prestate values of modifiable locations

Method Contract Rule: Normal Behavior Case

Simplified version

// implementation contract of m():
/*@ public normal_behavior
© requires normalPre;
@ ensures normalPost;
@ assignable mod;
@*/

Method Contract Rule: Normal Behavior Case

Simplified version

// implementation contract of m():
/*@ public normal_behavior
© requires normalPre;
© ensures normalPost;
@ assignable mod;
@*/

$$
\Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) ; \omega\right\rangle \phi, \Delta
$$

- π : opening of try blocks and method frames

Method Contract Rule: Normal Behavior Case

Simplified version

// implementation contract of m():
/*@ public normal_behavior
@ requires normalPre;
@ ensures normalPost;
@ assignable mod;
@*/

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \mathcal{F} \text { (normalPre) }, \Delta \quad \text { (precondition) } \\
& \Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) ; \omega\right\rangle \phi, \Delta
\end{aligned}
$$

- π : opening of try blocks and method frames
- $\mathcal{F}(\cdot)$: translation from JML to Java DL

JML Method Contracts Revisited

```
/*@ public normal_behavior
    @ requires normalPre;
    @ ensures normalPost;
    @ assignable mod;
    @*/
T m(T1 a1, ..., Tn an) { ... }
```


Implicit Preconditions and Postconditions

- The object referenced by this is not null: this!=null (precondition only; this cannot be changed by method)

JML Method Contracts Revisited

```
/*@ public normal_behavior
    @ requires normalPre;
    @ ensures normalPost;
    @ assignable mod;
    @*/
T m(T1 a1, ..., Tn an) { ... }
```


Implicit Preconditions and Postconditions

- The object referenced by this is not null: this!=null (precondition only; this cannot be changed by method)
- The heap is wellformed: wellFormed(heap) (precondition only)

JML Method Contracts Revisited

```
/*@ public normal_behavior
    @ requires normalPre;
    @ ensures normalPost;
    @ assignable mod;
    @*/
T m(T1 a1, ..., Tn an) { ... }
```


Implicit Preconditions and Postconditions

- The object referenced by this is not null: this!=null (precondition only; this cannot be changed by method)
- The heap is wellformed: wellFormed(heap) (precondition only)
- Invariant for this: \invariant_for(this)

Method Contract Rule: Normal Behavior Case

Simplified version

// implementation contract of m():
/*@ public normal_behavior
© requires normalPre;
@ ensures normalPost;
@ assignable mod;
@*/

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \mathcal{F} \text { (normalPre) }, \Delta \quad \text { (precondition) } \\
& \Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=m\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) ; \omega\right\rangle \phi, \Delta
\end{aligned}
$$

- π : opening of try blocks and method frames
- $\mathcal{F}(\cdot)$: translation from JML to Java DL

Method Contract Rule: Normal Behavior Case

Simplified version

// implementation contract of m():
/*@ public normal_behavior
@ requires normalPre;
@ ensures normalPost;
© assignable mod;
@*/

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \mathcal{F} \text { (normalPre) }, \Delta \quad \text { (precondition) } \\
& \Gamma \Longrightarrow \mathcal{U} \quad(\mathcal{F}(\text { normalPost }) \rightarrow\langle\pi \omega\rangle \phi), \Delta \quad \text { (normal) } \\
& \Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=m\left(a_{1}, \ldots, a_{n}\right) ; \omega\right\rangle \phi, \Delta
\end{aligned}
$$

- π : opening of try blocks and method frames
- $\mathcal{F}(\cdot)$: translation from JML to Java DL

Method Contract Rule: Normal Behavior Case

Simplified version

// implementation contract of $m():$
/*@ public normal_behavior
@ requires normalPre;
© ensures normalPost;
@ assignable mod;
@*/

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \mathcal{F}(\text { normalPre }), \Delta \quad \text { (precondition) } \\
& \Gamma \Longrightarrow \mathcal{U} \mathcal{V}_{\bmod }(\mathcal{F}(\text { normalPost }) \rightarrow\langle\pi \omega\rangle \phi), \Delta \quad \text { (normal) } \\
& \Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=m\left(a_{1}, \ldots, a_{n}\right) ; \omega\right\rangle \phi, \Delta
\end{aligned}
$$

- π : opening of try blocks and method frames
- $\mathcal{F}(\cdot)$: translation from JML to Java DL
- $\mathcal{V}_{\text {mod }}$: anonymising update, forgetting prevalues of modifiable locations

Keeping the Context

- Want to keep part of prestate \mathcal{U} that is unmodified by called method

Keeping the Context

- Want to keep part of prestate \mathcal{U} that is unmodified by called method
- assignable clause of contract tells what can possibly be modified
@ assignable mod;

Keeping the Context

- Want to keep part of prestate \mathcal{U} that is unmodified by called method
- assignable clause of contract tells what can possibly be modified
© assignable mod;
- How to erase all values of assignable locations in state \mathcal{U} ?

Keeping the Context

- Want to keep part of prestate \mathcal{U} that is unmodified by called method
- assignable clause of contract tells what can possibly be modified
@ assignable mod;
- How to erase all values of assignable locations in state \mathcal{U} ?
- Anonymising updates \mathcal{V} erase information about modified locations

Anonymising Heap Locations

Define anonymising function anon: Heap \times LocSet \times Heap \rightarrow Heap
The resulting heap anon(...) coincides with the first heap on all locations except for those specified in the location set. Those locations attain the value specified by the second heap.

Anonymising Heap Locations

Define anonymising function anon: Heap \times LocSet \times Heap \rightarrow Heap
The resulting heap anon(...) coincides with the first heap on all locations except for those specified in the location set. Those locations attain the value specified by the second heap.

Definition:
$\operatorname{select}(\operatorname{anon}(h 1, l o c s, h 2), o, f)= \begin{cases}\operatorname{select}(h 2, o, f) & \text { if }(o, f) \in \operatorname{locs} \\ \operatorname{select}(h 1, o, f) & \text { otherwise }\end{cases}$

Anonymising Heap Locations

Define anonymising function anon: Heap \times LocSet \times Heap \rightarrow Heap
The resulting heap anon(...) coincides with the first heap on all locations except for those specified in the location set. Those locations attain the value specified by the second heap.

Definition:
$\operatorname{select}(\operatorname{anon}(h 1$, locs,$h 2), o, f)= \begin{cases}\operatorname{select}(h 2, o, f) & \text { if }(o, f) \in \operatorname{locs} \\ \operatorname{select}(h 1, o, f) & \text { otherwise }\end{cases}$

Usage:

$$
\mathcal{V}_{\text {mod }}=\left\{\text { heap }:=\operatorname{anon}\left(\text { heap }, l o c s_{\text {mod }}, \text { han }\right)\right\}
$$

where $h_{a n}$ a new (not yet used) constant of type Heap

Anonymising Heap Locations

Define anonymising function anon: Heap \times LocSet \times Heap \rightarrow Heap
The resulting heap anon(...) coincides with the first heap on all locations except for those specified in the location set. Those locations attain the value specified by the second heap.

Definition:
$\operatorname{select}(\operatorname{anon}(h 1$, locs,$h 2), o, f)= \begin{cases}\operatorname{select}(h 2, o, f) & \text { if }(o, f) \in \operatorname{locs} \\ \operatorname{select}(h 1, o, f) & \text { otherwise }\end{cases}$

Usage:

$$
\mathcal{V}_{\text {mod }}=\left\{\text { heap }:=\operatorname{anon}\left(\text { heap }, \text { locs }_{\text {mod }}, \text { han }\right)\right\}
$$

where $h_{a n}$ a new (not yet used) constant of type Heap
Effect: After $\mathcal{V}_{\text {mod }}$, modfied locations have unknown values

Anonymising Heap Locations: Example

@ assignable o.a, this.*;

Anonymising Heap Locations: Example

@ assignable ○.a, this.*;

To erase all knowledge about the values of the locations of the assignable expression:

- Anonymise the current heap on the designated locations:

$$
\text { anon(heap, } \left.\{(\mathrm{o}, \mathrm{a})\} \cup \text { allFields(this), } \mathrm{h}_{a n}\right)
$$

- Make that anonymised current heap the new current heap.

$$
\left.\mathcal{V}_{\text {mod }}=\left\{\text { heap }:=\text { anon(heap, }\{(\mathrm{o}, \mathrm{a})\} \cup \text { allFields(this) }, \mathrm{h}_{\text {an }}\right)\right\}
$$

Method Contract Rule: Exceptional Behavior Case

Simplified version

/*@ public exceptional_behavior
@ requires excPre;
@ signals (Exception exc) excPost;
@ assignable mod;
@*/

Method Contract Rule: Exceptional Behavior Case

Simplified version

```
/*@ public exceptional_behavior
    @ requires excPre;
    @ signals (Exception exc) excPost;
    @ assignable mod;
    @*/
```

$\Gamma \Longrightarrow \mathcal{U}\left\langle\pi\right.$ result $\left.=m\left(a_{1}, \ldots, a_{n}\right) ; \omega\right\rangle \phi, \Delta$

- π are openings of try blocks and method frames

Method Contract Rule: Exceptional Behavior Case

Simplified version

```
/*@ public exceptional_behavior
    @ requires excPre;
    @ signals (Exception exc) excPost;
    @ assignable mod;
    @*/
```

$\Gamma \Longrightarrow \mathcal{U F}($ excPre $), \Delta \quad$ (precondition)
$\Gamma \Longrightarrow \mathcal{U}\left\langle\pi\right.$ result $\left.=m\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) ; \omega\right\rangle \phi, \Delta$

- π are openings of try blocks and method frames
- $\mathcal{F}(\cdot)$: translation from JML to Java DL

Method Contract Rule: Exceptional Behavior Case

Simplified version

```
/*@ public exceptional_behavior
    @ requires excPre;
    @ signals (Exception exc) excPost;
    @ assignable mod;
    @*/
```

```
\Gamma\Longrightarrow\mathcal{UF}
\Gamma 诠
->\langle\pi}\mathrm{ throw exc; }\omega\rangle\phi),\Delta (exceptional)
\Gamma }\Longrightarrow\mathcal{U}\langle\pi\mathrm{ result }=\textrm{m}(\mp@subsup{\textrm{a}}{1}{},\ldots,\mp@subsup{\textrm{a}}{\textrm{n}}{});\omega\rangle\phi,
```

- π are openings of try blocks and method frames
- $\mathcal{F}(\cdot)$: translation from JML to Java DL
- $\mathcal{V}_{\text {mod }}$: anonymising update

Method Contract Rule - Combined

(background only, no need to remember)
KeY uses actually one rule for both kinds of cases.

Method Contract Rule - Combined

(background only, no need to remember)
KeY uses actually one rule for both kinds of cases.
Therefore translation of postcondition $\phi_{\text {post }}$ as follows (simplified):

$$
\begin{aligned}
\phi_{\text {post_n }} & \equiv \mathcal{F}(\backslash \text { old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\backslash \text { old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
$$

Method Contract Rule - Combined

(background only, no need to remember)
KeY uses actually one rule for both kinds of cases.
Therefore translation of postcondition $\phi_{\text {post }}$ as follows (simplified):

$$
\begin{aligned}
\phi_{\text {post } _} & \equiv \mathcal{F}(\backslash \text { old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\backslash \text { old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
$$

$$
\Gamma \Longrightarrow \mathcal{U}(\mathcal{F}(\text { normalPre }) \vee \mathcal{F}(\text { excPre })), \Delta \quad(\text { precondition })
$$

$$
\Gamma \Rightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) ; \omega\right\rangle \phi, \Delta
$$

- $\mathcal{F}(\cdot)$: translation to Java DL
- $\mathcal{V}_{\text {mod }}$: anonymising update

Method Contract Rule - Combined

(background only, no need to remember)
KeY uses actually one rule for both kinds of cases.
Therefore translation of postcondition $\phi_{\text {post }}$ as follows (simplified):

$$
\begin{aligned}
\phi_{\text {post_n }} & \equiv \mathcal{F}(\text { \old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\text { \old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U}(\mathcal{F}(\text { normalPre }) \vee \mathcal{F}(\text { excPre })), \Delta \quad \text { (precondition }) \\
& \Gamma \Longrightarrow \mathcal{U} \mathcal{V}_{\text {mod }_{\text {normal }}}\left(\phi_{\text {post_n }} \rightarrow\langle\pi \omega\rangle \phi\right), \Delta \quad(\text { normal })
\end{aligned}
$$

$$
\Gamma \Longrightarrow \mathcal{U}\left\langle\pi \text { result }=\mathrm{m}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) ; \omega\right\rangle \phi, \Delta
$$

- $\mathcal{F}(\cdot)$: translation to Java DL
- $\mathcal{V}_{\text {mod }}$: anonymising update

Method Contract Rule - Combined

(background only, no need to remember)
KeY uses actually one rule for both kinds of cases.
Therefore translation of postcondition $\phi_{\text {post }}$ as follows (simplified):

$$
\begin{aligned}
\phi_{\text {post_n }} & \equiv \mathcal{F}(\backslash \text { old }(\text { normalPre })) \wedge \mathcal{F}(\text { normalPost }) \\
\phi_{\text {post_e }} & \equiv \mathcal{F}(\backslash \text { old }(\text { excPre })) \wedge \mathcal{F}(\text { excPost })
\end{aligned}
$$

```
\Gamma\Longrightarrow\mathcal{U}(\mathcal{F}(\mathrm{ normalPre )}\vee\mathcal{F}(\mathrm{ excPre)), }\Delta (precondition)
\Gamma\Longrightarrow\mathcal{U}\mp@subsup{\mathcal{V}}{\mp@subsup{\mathrm{ mod }}{normal}{l}}{}(\mp@subsup{\phi}{\mathrm{ post_n }}{}->\langle\pi\omega\rangle\phi),\Delta (normal)
```



```
    ->\langle\pi throw exc; \omega\rangle\phi),\Delta (exceptional)
\Gamma \Longrightarrow\mathcal{U}\langle\pi\mathrm{ result }=m(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{});\omega\rangle\phi,\Delta
```

- $\mathcal{F}(\cdot)$: translation to Java DL
- $\mathcal{V}_{\text {mod }}$: anonymising update

Method Contract Rule: Example

```
class Person {
    private /*@ spec_public @*/ int age;
    /*@ public normal_behavior
    @ requires age < 29;
    @ ensures age == \old(age) + 1;
    @ assignable age;
    @ also
    @ public exceptional_behavior
    @ requires age >= 29;
    @ signals_only ForeverYoungException;
    @ assignable \nothing;
    @//allows object creation (not \strictly_nothing)
    @*/
    public void birthday() {
    if (age >= 29) throw new ForeverYoungException();
    age++;
```

 \} \}

Method Contract Rule: Example Cont'd

Demo
methods/useContractForBirthday.key

- Prove without contracts
- Method treatment: Expand
- Prove with contracts (until method contract application)
- Method treatment: Contract
- Prove used contracts
- Method treatment: Expand
- Select contracts for birthday() in src/Person.java
- Prove both specification cases

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations?

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations?

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations?

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
- an unknown number of iterations?

Verification of Loops

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
- an unknown number of iterations?

We need an invariant rule (or some form of induction)

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- In particular, if the loop terminates, then Inv holds afterwards

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- In particular, if the loop terminates, then Inv holds afterwards
- Challenge: construct Inv such that, together with loop exit condition, it implies postcondition of loop

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- In particular, if the loop terminates, then Inv holds afterwards
- Challenge: construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

looplnvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- In particular, if the loop terminates, then Inv holds afterwards
- Challenge: construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta
$$

(valid when entering loop)
loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- In particular, if the loop terminates, then Inv holds afterwards
- Challenge: construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

$$
\begin{aligned}
\Gamma & \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & & (\text { valid when ente } \\
\operatorname{Inv}, b & =\mathrm{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{lnv} & & (\text { preserved by } \mathrm{p})
\end{aligned}
$$

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) p } \omega] \phi, \Delta
$$

Loop Invariants

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop body whenever the loop guard is true
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- In particular, if the loop terminates, then Inv holds afterwards
- Challenge: construct Inv such that, together with loop exit condition, it implies postcondition of loop

Basic Invariant Rule

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \\
& \operatorname{Inv}, b=\text { TRUE } \Rightarrow[\mathrm{p}] \ln v \quad \text { (preserved by } \mathrm{p} \text {) } \\
& \text { loopInvariant } \frac{\operatorname{Inv}, b=\text { FALSE } \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta} \\
& \text { (valid when entering loop) } \\
& \text { (preserved by p) } \\
& \text { (assumed after exit) }
\end{aligned}
$$

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

```
    n >= 0 & wellFormed(heap)
-> {i := 0}
    \[{ while (i < n) {
        i = i + 1;
        }
        }\] i = n
```

Look at desired postcondition $\mathrm{i}=\mathrm{n}$
What, in addition to negated guard i >= n, is needed?

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

```
    n >= 0 & wellFormed(heap)
-> {i := 0}
    \[{ while (i < n) {
        i = i + 1;
        }
        }\] i = n
```

Look at desired postcondition $\mathrm{i}=\mathrm{n}$
What, in addition to negated guard i >= n, is needed? i <= n

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

```
    n >= 0 & wellFormed(heap)
-> {i := 0}
    \[{ while (i < n) {
        i = i + 1;
        }
        }\] i = n
```

Look at desired postcondition $\mathrm{i}=\mathrm{n}$
What, in addition to negated guard i >= n, is needed? i <= n
Is i <= n preserved by loop body?
Does it hold when entering loop?

How to Derive Loop Invariants Systematically?

Example (Active statement of symbolic execution is loop)

```
    n >= 0 & wellFormed(heap)
-> {i := 0}
    \[{ while (i < n) {
        i = i + 1;
        }
        }\] i = n
```

Look at desired postcondition $\mathrm{i}=\mathrm{n}$
What, in addition to negated guard i >= n, is needed? $i<=n$
Is i <= n preserved by loop body?
Does it hold when entering loop?
Yes! We have found a suitable loop invariant!
Demo loops/simple.key (auto after inv)

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

```
    \(\mathrm{n}>=0\) \& \(\mathrm{n}=\mathrm{m}\) \& wellFormed(heap)
-> \(\{\mathrm{i}:=0\}\)
    \[\{ while (i < n) \{
        i = i +1 ;
        \}
        \}\] \(i=m\)
```

Look at desired postcondition $\mathrm{i}=\mathrm{m}$
What, in addition to negated guard i >= n, is needed?

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

```
    \(\mathrm{n}>=0\) \& \(\mathrm{n}=\mathrm{m}\) \& wellFormed(heap)
-> \(\{\mathrm{i}:=0\}\)
    \[\{ while (i < n) \{
        i = i + 1 ;
        \}
        \}\] i = m
```

Look at desired postcondition $\mathrm{i}=\mathrm{m}$
What, in addition to negated guard i >= n, is needed?
i <= n \& n = m

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

```
    \(\mathrm{n}>=0 \& \mathrm{n}=\mathrm{m}\) \& wellFormed(heap)
-> \(\{i \quad:=0\}\)
    \[\{ while (i < n) \{
        i = i + 1;
        \}
        \}\] i = m
```

Look at desired postcondition $\mathrm{i}=\mathrm{m}$
What, in addition to negated guard i $>=n$, is needed?
i <= n \& n = m
Is i <= n \& $\mathrm{n}=\mathrm{m}$ preserved by loop body?
Does it hold when entering loop?

Obtaining Invariants by Strengthening

Example (Slightly changed problem)

```
    \(\mathrm{n}>=0\) \& \(\mathrm{n}=\mathrm{m}\) \& wellFormed(heap)
-> \(\{\mathrm{i}:=0\}\)
    \[\{ while (i < n) \{
        \(i=i+1 ;\)
        \}
        \}\] \(i=m\)
```

Look at desired postcondition $\mathrm{i}=\mathrm{m}$
What, in addition to negated guard i $>=n$, is needed?
i <= n \& n = m
Is $\mathrm{i}<=\mathrm{n}$ \& $\mathrm{n}=\mathrm{m}$ preserved by loop body?
Does it hold when entering loop?
Yes! We have found a suitable loop invariant!

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)
$\mathrm{x}=\mathrm{x} 0$ \& $\mathrm{y}=\mathrm{y} 0$ \& y0 >= 0 \& wellFormed(heap) ==>

$$
\{
while (y > 0) \{
\(\mathrm{x}=\mathrm{x}+1\);
\(\mathrm{y}=\mathrm{y}-1\);
\}
\}
$$ ($x=x 0+y 0)$

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)
$\mathrm{x}=\mathrm{x} 0$ \& $\mathrm{y}=\mathrm{y} 0$ \& y0 >= 0 \& wellFormed(heap) ==>

$$
\{
while (y > 0) \{
\(\mathrm{x}=\mathrm{x}+1\);
\[
\mathrm{y}=\mathrm{y}-1 ;
$$

\}
\}\] ($x=x 0+y 0)$

Finding the invariant

First attempt: use postcondition $\mathrm{x}=\mathrm{x} 0+\mathrm{y} 0$

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)

```
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
```

$$
\{
while (y > 0) \{
\[
x=x+1 ;
$$

$$
\mathrm{y}=\mathrm{y}-1
$$

\}
\}\] ($x=x 0+y 0)$

Finding the invariant

First attempt: use postcondition $\mathrm{x}=\mathrm{x} 0+\mathrm{y} 0$

- Not true at start whenever y0 > 0
- Not preserved by loop, because x is increased

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)

```
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
```

$$
\{
while (y > 0) \{
\(\mathrm{x}=\mathrm{x}+1\);
\[
\mathrm{y}=\mathrm{y}-1 ;
$$

\}
\}\] ($x=x 0+y 0)$

Finding the invariant
What stays invariant?

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)

```
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
```

$$
\{
while (y > 0) \{
\[
x=x+1 ;
$$

$$
\mathrm{y}=\mathrm{y}-1 ;
$$

\}
\}\] ($x=x 0+y 0)$

Finding the invariant

What stays invariant?

- The sum of x and $\mathrm{y}: ~ \mathrm{x}+\mathrm{y}=\mathrm{x} 0+\mathrm{y} 0$ "Generalization"
- Think of delta between x and $\mathrm{x} 0+\mathrm{y} 0$ within loop

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)

```
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
```

$$
\{
while (y > 0) \{
\(\mathrm{x}=\mathrm{x}+1\);
\[
\mathrm{y}=\mathrm{y}-1 ;
$$

\}
\}\] ($x=x 0+y 0)$

Checking the invariant Is $\mathrm{x}+\mathrm{y}=\mathrm{x} 0+\mathrm{y} 0$ a good invariant?

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)

```
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
```

$$
\{
while (y > 0) \{
\(\mathrm{x}=\mathrm{x}+1\);
\[
y=y-1 ;
$$

\}
\}\] ($x=x 0+y 0)$

Checking the invariant Is $\mathrm{x}+\mathrm{y}=\mathrm{x} 0+\mathrm{y} 0$ a good invariant?

- Holds in the beginning and is preserved by loop

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)

```
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
```

$$
\{
while (y > 0) \{
\[
\mathrm{x}=\mathrm{x}+1 ;
$$

$$
y=y-1 ;
$$

\}
\}\] ($x=x 0+y 0)$

Checking the invariant
Is $\mathrm{x}+\mathrm{y}=\mathrm{x} 0+\mathrm{y} 0$ a good invariant?

- Holds in the beginning and is preserved by loop
- But postcondition not implied by $\mathrm{x}+\mathrm{y}=\mathrm{x} 0+\mathrm{y} 0$ and exit condition $\mathrm{y}<=0$

Generalization

Example (Addition: x, y program variables, $\mathrm{x} 0, \mathrm{y} 0$ rigid constants)

```
x = x0 & y = y0 & y0 >= 0 & wellFormed(heap) ==>
```

$$
\{
while (y > 0) \{
\(\mathrm{x}=\mathrm{x}+1\);
\[
\mathrm{y}=\mathrm{y}-1 ;
$$

\}
\}\] ($x=x 0+y 0)$

Strenghtening the invariant
Postcondition holds if $\mathrm{y}=0$

- Add y >= 0 to invariant: $\mathrm{x}+\mathrm{y}=\mathrm{x} 0+\mathrm{y} 0$ \& $\mathrm{y}>=0$

Demo loops/simple3.key

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \\
& \operatorname{Inv}, b=\text { TRUE } \Rightarrow[\mathrm{p}] / n v \\
& \text { loopInvariant } \frac{\operatorname{Inv}, b=\text { FALSE } \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta} \\
& \text { (initially valid) } \\
& \text { (preserved) } \\
& \text { (use case) }
\end{aligned}
$$

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \\
& \operatorname{Inv}, b=\text { TRUE } \Rightarrow[\mathrm{p}] / n v \\
& \text { (initially valid) } \\
& \text { (preserved) } \\
& \text { loopInvariant } \frac{\ln v, b=\text { FALSE } \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
\end{aligned}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3rd premise:
$\Gamma, \neg \Delta$ cannot be assumed for arbitrary iterations or at loop exit 2nd premise State after some loop iterations is not \mathcal{U} 3rd premise State at loop exit is not \mathcal{U}

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \\
& \operatorname{Inv}, b=\text { TRUE } \Rightarrow[\mathrm{p}] / n v \\
& \text { (initially valid) } \\
& \text { (preserved) } \\
& \text { loopInvariant } \frac{\operatorname{lnv}, b=\text { FALSE } \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
\end{aligned}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3rd premise:
$\Gamma, \neg \Delta$ cannot be assumed for arbitrary iterations or at loop exit 2nd premise State after some loop iterations is not \mathcal{U} 3rd premise State at loop exit is not \mathcal{U}
- Context contains preconditions and class invariants

Basic Loop Invariant: Context Loss

Problems with the Basic Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b=\operatorname{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \text { (preserved) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2 nd and 3rd premise:
$\Gamma, \neg \Delta$ cannot be assumed for arbitrary iterations or at loop exit 2nd premise State after some loop iterations is not \mathcal{U} 3rd premise State at loop exit is not \mathcal{U}
- Context contains preconditions and class invariants
- Only way to propagate context: add to loop invariant Inv

Example

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```


Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Example

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad$ \& $i \leq$ a.length

Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad \& \quad i \leq$ a.length

$$
\& \forall \text { int } x ;(0 \leq x \& x<i \rightarrow a[x]=1)
$$

Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad \& \quad i \leq$ a.length
\& \forall int $x ;(0 \leq x \& x<\mathrm{i} \rightarrow \mathrm{a}[x]=1)$
\& $a \neq$ null

Example

Precondition: $\mathrm{a} \neq \mathrm{null} \&$ ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad \& \quad i \leq a . l e n g t h$
\& \forall int $x ;(0 \leq x \& x<i \rightarrow a[x]=1)$
\& $a \neq$ null
\& ClassInv

Keeping the Context (As In Method Contract Rule)

- Want to keep part of the context that is not modified by loop

Keeping the Context (As In Method Contract Rule)

- Want to keep part of the context that is not modified by loop
- assignable clauses for loops tell what can possibly be modified
@ assignable i, a [*];

Keeping the Context (As In Method Contract Rule)

- Want to keep part of the context that is not modified by loop
- assignable clauses for loops tell what can possibly be modified

```
@ assignable i, a[*];
```

- How to erase all values of assignable locations?

Keeping the Context (As In Method Contract Rule)

- Want to keep part of the context that is not modified by loop
- assignable clauses for loops tell what can possibly be modified

```
@ assignable i, a [*];
```

- How to erase all values of assignable locations?
- Anonymising updates \mathcal{V} erase information about modified locations

Anonymising Java Locations

@ assignable i, a[*];

To erase all knowledge about these assignable locations:

- introduce a new (not yet used) constant of type int, e.g., c
- introduce a new (not yet used) constant of type Heap, e.g., $h_{a n}$
- anonymise the current heap: anon(heap, allFields(a), $\mathrm{h}_{\text {an }}$)
- compute anonymizing update for assignable locations

$$
\mathcal{V}=\left\{i:=c| | \text { heap }:=\operatorname{anon}\left(\text { heap }, \text { allFields(a) }, h_{a n}\right)\right\}
$$

Anonymising Java Locations

```
@ assignable
a [*];
```

To erase all knowledge about these assignable locations:

- introduce a new (not yet used) constant of type int, e.g., c
- introduce a new (not yet used) constant of type Heap, e.g., $\mathrm{h}_{\text {an }}$
- anonymise the current heap: anon(heap, allFields(a), $\mathrm{h}_{a n}$)
- compute anonymizing update for assignable locations

$$
\mathcal{V}=\left\{i:=c| | \text { heap }:=\operatorname{anon}\left(\text { heap }, \text { allFields(a) }, h_{a n}\right)\right\}
$$

For local program variables (e.g., i) KeY computes assignable clause automatically

Loop Invariants Cont'd

Improved Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta
$$

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while(b) } \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially val } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b=\mathrm{TRUE} \rightarrow[\mathrm{p}] \operatorname{lnv}), \Delta & \text { (preserved) }
\end{array}
$$

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially val } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b=\mathrm{TRUE} \rightarrow[\mathrm{p}] \operatorname{lnv}), \Delta & \text { (preserved) } \\
\Gamma \Longrightarrow \mathcal{U} \mathcal{V}(\operatorname{Inv} \& b=\mathrm{FALSE} \rightarrow[\pi \omega] \phi), \Delta & \text { (use case) }
\end{array}
$$

Loop Invariants Cont'd

Improved Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially val } \\
\Gamma \Longrightarrow \mathcal{U V}(\operatorname{Inv} \& b=\mathrm{TRUE} \rightarrow[\mathrm{p}] \operatorname{lnv}), \Delta & \text { (preserved) } \\
\Gamma \Longrightarrow \mathcal{U V}(\operatorname{Inv} \& b=\mathrm{FALSE} \rightarrow[\pi \omega] \phi), \Delta & \text { (use case) } \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while(b) } \mathrm{p} \omega] \phi, \Delta &
\end{array}
$$

- Context is kept as far as possible:
\mathcal{V} erases only information in locations assignable in the loop
- Invariant Inv does not need to include unmodified locations
- For assignable \everything (the default):
- heap $:=\operatorname{anon}\left(\right.$ heap, allLocs, $\mathrm{h}_{\text {an }}$) wipes out all heap information
- Equivalent to basic invariant rule
- Avoid this! Always give a specific assignable clause

Example with Improved Invariant Rule

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example with Improved Invariant Rule

Precondition: $\mathrm{a} \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad$ \& $i \leq$ a.length

Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<a$. length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \text { int } x ;(0 \leq x \& x<i \rightarrow a[x]=1)
$$

Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq i \quad$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \text { int } x ;(0 \leq x \& x<i \rightarrow a[x]=1)
$$

Example with Improved Invariant Rule

Precondition: $\mathrm{a} \neq$ null \& ClassInv

```
int i = 0;
while(i < a.length) {
        a[i] = 1;
        i++;
}
```

Postcondition: \forall int $x ;(0 \leq x \& x<$ a.length $\rightarrow \mathrm{a}[x]=1)$

Loop invariant: $0 \leq \mathrm{i}$ \& $\mathrm{i} \leq$ a.length

$$
\& \forall \text { int } x ;(0 \leq x \& x<i \rightarrow a[x]=1)
$$

Example in JML/Java - Loop.java

Demo

```
public int[] a;
/*@ public normal_behavior
    @ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
    @ diverges true;
    @*/
public void m() {
    int i = 0;
    /*@ loop_invariant
        @ 0 <= i && i <= a.length &&
        @ (\forall int x; 0<=x && x<i; a[x]==1);
        @ assignable a[*];
        @*/
    while(i < a.length) {
        a[i] = 1;
        i++;
    }
}

\section*{Example from an earlier Lecture}
\(\forall\) int \(x\);
\[
\begin{aligned}
& (x=\mathrm{n} \wedge x>=0 \rightarrow \\
& \quad \begin{array}{l}
\mathrm{i}=0 ; \mathrm{r}=0 ; \\
\quad \text { while }(\mathrm{i}<\mathrm{n}) \quad\{\mathrm{i}=\mathrm{i}+1 ; \mathrm{r}=\mathrm{r}+\mathrm{i} ;\} \\
\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n} ;
\end{array} \\
& \quad](\mathrm{r}=x * x)
\end{aligned}
\]

How can we prove that the above formula is valid (i.e., satisfied in all states)?

\section*{Example from an earlier Lecture}
\(\forall\) int \(x\);
\[
\begin{aligned}
& (x=\mathrm{n} \wedge x>=0 \rightarrow \\
& \quad \begin{array}{l}
\mathrm{i}=0 ; \mathrm{r}=0 ; \\
\quad \text { while }(\mathrm{i}<\mathrm{n}) \quad\{\mathrm{i}=\mathrm{i}+1 ; \mathrm{r}=\mathrm{r}+\mathrm{i} ;\} \\
\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n} ;
\end{array} \\
& \quad](\mathrm{r}=x * x)
\end{aligned}
\]

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Needed Invariant:

\section*{Example from an earlier Lecture}
\(\forall\) int \(x\);
\[
\begin{aligned}
& (x=\mathrm{n} \wedge x>=0 \rightarrow \\
& \quad \begin{array}{l}
\mathrm{i}=0 ; \mathrm{r}=0 ; \\
\quad \text { while }(\mathrm{i}<\mathrm{n}) \quad\{\mathrm{i}=\mathrm{i}+1 ; \mathrm{r}=\mathrm{r}+\mathrm{i} ;\} \\
\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n} ;
\end{array} \\
& \quad](\mathrm{r}=x * x)
\end{aligned}
\]

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Needed Invariant:
© loop_invariant
© \(i>=0\) \&\& \(i<=n \& \& 2 * r==i *(i+1)\);
© assignable \nothing; // no heap locations changed

\section*{Example from an earlier Lecture}
\(\forall\) int \(x\);
\[
\begin{aligned}
& (x=\mathrm{n} \wedge x>=0 \rightarrow \\
& \quad \begin{array}{l}
\mathrm{i}=0 ; \mathrm{r}=0 ; \\
\quad \text { while }(\mathrm{i}<\mathrm{n}) \quad\{\mathrm{i}=\mathrm{i}+1 ; \mathrm{r}=\mathrm{r}+\mathrm{i} ;\} \\
\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n} ;
\end{array} \\
& \quad](\mathrm{r}=x * x)
\end{aligned}
\]

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Needed Invariant:
© loop_invariant
© \(i>=0\) \&\& \(i<=n \& \& 2 * r==i *(i+1)\);
© assignable \nothing; // no heap locations changed
Demo Loop2.java

\section*{Hints}

\section*{Proving assignable}
- Invariant rule above assumes that assignable is correct
E.g., possible to prove nonsense with incorrect assignable \nothing;
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable This proof obligation is part of 'Body Preserves Invariant' branch

\section*{Hints}

\section*{Proving assignable}
- Invariant rule above assumes that assignable is correct
E.g., possible to prove nonsense with incorrect assignable \nothing;
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable This proof obligation is part of 'Body Preserves Invariant' branch

Setting in the KeY Prover when proving loops w. given invariant
- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /: Arithmetic treatment: DefOps
- Is search limit high enough (time out, rule apps.)?
- To prove only partial correctness, add diverges true;

\section*{Total Correctness}

Is the sequent
\[
\Longrightarrow[i=-1 ; \text { while (true) }\}] i=4711
\]
provable?

\section*{Total Correctness}

Is the sequent
\[
\Longrightarrow[i=-1 ; \text { while (true) }\}] i=4711
\]
provable?
Yes, e.g.,
@ loop_invariant true;
@ assignable \nothing;

\section*{Total Correctness}

Is the sequent
\[
\Longrightarrow[i=-1 ; \text { while (true) }\}] i=4711
\]
provable?
Yes, e.g.,
@ loop_invariant true;
@ assignable \nothing;
With this, correctness of non-terminating loop is provable:
- Invariant trivially initially valid and preserved:

Initial Case and Preserved Case close immediately
- Negated loop condition is false: Use case close immediately

\section*{Total Correctness}

Is the sequent
\[
\Longrightarrow[i=-1 ; \text { while (true) }\}] i=4711
\]
provable?
Yes, e.g.,
@ loop_invariant true;
@ assignable \nothing;
With this, correctness of non-terminating loop is provable:
- Invariant trivially initially valid and preserved:

Initial Case and Preserved Case close immediately
- Negated loop condition is false: Use case close immediately

But need a method to prove termination of loops

\section*{Mapping Loop Execution to Well-Founded Order}


Need to find expression getting smaller wrt \(\mathbb{N}\) in each iteration Such an expression is called a decreasing term or variant

\section*{Total Correctness: Decreasing Term (Variant)}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Total Correctness: Decreasing Term (Variant)}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

Proving termination in JML/JAVA
- Remove diverges true; from contract
- Add decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

\section*{Total Correctness: Decreasing Term (Variant)}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Proving termination in JML/JavA}
- Remove diverges true; from contract
- Add decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

Example (The array loop)
© decreasing

\section*{Total Correctness: Decreasing Term (Variant)}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Proving termination in JML/JavA}
- Remove diverges true; from contract
- Add decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

Example (The array loop)
© decreasing a.length - i;

\section*{Total Correctness: Decreasing Term (Variant)}

Find a decreasing integer term \(v\) (called variant)
Add the following premisses to the invariant rule:
- \(v \geq 0\) is initially valid
- \(v \geq 0\) is preserved by the loop body
- \(v\) is strictly decreased by the loop body

\section*{Proving termination in JML/JavA}
- Remove diverges true; from contract
- Add decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with \(\langle\ldots\rangle \phi\) )

Example (The array loop)
@ decreasing a.length - i;

Files:

\section*{Final Example: Computing the GCD(see 16.3 .8 [KeYbook])}
```

public class Gcd {
/*@ public normal_behavior
@ requires _small>=0 \&\& _big>=_small;
@ ensures _big!=0 ==>
@ (_big % \result == 0 \&\& _small % \result == 0 \&\&
@ (\forall int x; x>0 \&\& _big % x == 0
@ \&\& _small % x == 0; \result % x == 0));
@ assignable \nothing;
@*/
private static int gcdHelp(int _big, int _small) {
int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;
}
}

```

\section*{Computing the GCD: Method Specification}
```

public class Gcd {
/*@ public normal_behavior
@ requires _small>=0 \&\& _big>=_small;
@ ensures _big!=0 ==>
@ (_big % \result == 0 \&\& _small % \result == 0 \&\&
@ (\forall int x; x>0 \&\& _big % x == 0
@ \&\& _small % x == 0; \result % x == 0));
@ assignable \nothing;
@*/
private static int gcdHelp(int _big, int _small) {...}

```

\section*{Computing the GCD: Method Specification}
```

public class Gcd {
/*@ public normal_behavior
@ requires _small>=0 \&\& _big>=_small;
@ ensures _big!=0 ==>
@ (_big % \result == 0 \&\& _small % \result == 0 \&\&
@ (\forall int x; x>0 \&\& _big % x == 0
@ \&\& _small % x == 0; \result % x == 0));
@ assignable \nothing;
@*/

```
    private static int gcdHelp(int _big, int _small) \{...\}
    requires normalization assumptions on method parameters
        (both non-negative and _big \(\geq\) _small)

\section*{Computing the GCD: Method Specification}
```

public class Gcd {
/*@ public normal_behavior
@ requires _small>=O \&\& _big>=_small;
@ ensures _big!=0 ==>
@ (_big % \result == 0 \&\& _small % \result == 0 \&\&
@ (\forall int x; x>0 \&\& _big % x == 0
@ \&\& _small % x == 0; \result % x == 0));
@ assignable \nothing;
@*/

```
private static int gcdHelp(int _big, int _small) \{...\}
requires normalization assumptions on method parameters (both non-negative and _big \(\geq\) _small)
ensures if _big positive, then

\section*{Computing the GCD: Method Specification}
```

public class Gcd {
/*@ public normal_behavior
@ requires _small>=O \&\& _big>=_small;
@ ensures _big!=0 ==>
@ (_big % \result == 0 \&\& _small % \result == 0 \&\&
@ (\forall int x; x>0 \&\& _big % x == 0
@ \&\& _small % x == 0; \result % x == 0));
@ assignable \nothing;
@*/

```
private static int gcdHelp(int _big, int _small) \{...\}
requires normalization assumptions on method parameters (both non-negative and _big \(\geq\) _small)
ensures if _big positive, then
- the return value \result is a divisor of both arguments

\section*{Computing the GCD: Method Specification}
```

public class Gcd {
/*@ public normal_behavior
@ requires _small>=0 \&\& _big>=_small;
@ ensures _big!=0 ==>
@ (_big % \result == 0 \&\& _small % \result == 0 \&\&
@ (\forall int x; x>0 \&\& _big % x == 0
@ \&\& _small % x == 0; \result % x == 0));
@ assignable \nothing;
@*/
private static int gcdHelp(int _big, int _small) {...}
requires normalization assumptions on method parameters
(both non-negative and _big \geq _small)
ensures if _big positive, then
| the return value \result is a divisor of both arguments
> all other divisors x of the arguments are also divisors of
\result and thus smaller or equal to \result

```

\section*{Computing the GCD: Specify the Loop Body}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Which locations are changed (at most)?

\section*{Computing the GCD: Specify the Loop Body}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Which locations are changed (at most)?
@ assignable \nothing; // no heap locations changed
What is the variant?

\section*{Computing the GCD: Specify the Loop Body}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Which locations are changed (at most)?
@ assignable \nothing; // no heap locations changed
What is the variant?
@ decreases small;

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;
Loop Invariant

```

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small
- Possible for big to become 0 in a loop iteration?

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small
- Possible for big to become 0 in a loop iteration? No.

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small
- Adding big>0 to loop invariant?

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small
- Adding big>0 to loop invariant? No. Not initially valid.

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small
- Weaker condition necessary: big==0 ==> _big==0

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
rөturn big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small
- Weaker condition necessary: big==0 ==> _big==0
- What does the loop preserve?

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

Loop Invariant
- Order between small and big preserved by loop: big>=small
- Weaker condition necessary: big==0 ==> _big==0
- What does the loop preserve? The set of divisors!

All common divisors of _big, _small are also divisors of big, small

\section*{Computing the GCD: Specify the Loop Body Cont'd}
```

int big = _big; int small = _small;
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big;

```

\section*{Loop Invariant}
- Order between small and big preserved by loop: big>=small
- Weaker condition necessary: big==0 ==> _big==0
- What does the loop preserve? The set of divisors!

All common divisors of _big, _small are also divisors of big, small
( \(\backslash\) forall int x ; \(\mathrm{x}>0\);
\[
\begin{aligned}
& \left(\_b i g \% \mathrm{x}==0\right. \text { \&\& _small\%x == 0) } \\
& <==> \\
& (\mathrm{big} \% \mathrm{x}==0 \text { \&\& small\%x == 0));}
\end{aligned}
\]

\section*{Computing the GCD: Final Specification}
```

int big = _big; int small = _small;
/*@ loop_invariant small >= 0 \&\& big >= small \&\&
@ (big == 0 ==> _big == 0) \&\&
@ (\forall int x; x > 0; (_big % x == 0 \&\& _small % x == 0)
@
@
(big % x == 0 \&\& small % x == 0));
@ decreases small;
@ assignable \nothing;
@*/
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big; // assigned to \result

```

\section*{Computing the GCD: Final Specification}
```

int big = _big; int small = _small;
/*@ loop_invariant small >= 0 \&\& big >= small \&\&
@ (big == 0 ==> _big == 0) \&\&
@ (\forall int x; x > 0; (_big % x == 0 \&\& _small % x == 0)
@
@ (big % x == 0 \&\& small % x == 0));
@ decreases small;
@ assignable \nothing;
@*/
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big; // assigned to \result

```

Why does big divides _small and _big follow from the loop invariant?

\section*{Computing the GCD: Final Specification}
```

int big = _big; int small = _small;
/*@ loop_invariant small >= 0 \&\& big >= small \&\&
@ (big == 0 ==> _big == 0) \&\&
@ (\forall int x; x > 0; (_big % x == 0 \&\& _small % x == 0)
@
@ (big % x == 0 \&\& small % x == 0));
@ decreases small;
@ assignable \nothing;
@*/
while (small != 0) {
final int t = big % small;
big = small;
small = t;
}
return big; // assigned to \result

```

Why does big divides _small and _big follow from the loop invariant? If big is positive, one can instantiate x with it, and use small \(==0\)

\section*{Computing the GCD: Demo}

\section*{Demo loops/Gcd.java}
1. Show Gcd.java and \(\operatorname{gcd}(a, b)\)
2. Select "One Step Simplification", "Contract", "DefOps", 10k steps
3. Prove contract of \(\operatorname{gcd}()\), using contract of \(\operatorname{gcdHelp}()\)
4. Select "Invariant"
5. Prove contract of \(\operatorname{gcdHelp}()\)

\section*{Some Hints On Finding Invariants}

\section*{General Advice}
- Invariants must be developed, they don't come out of thin air!
- Be as systematic in deriving invariants as when debugging a program

\section*{Some Hints On Finding Invariants, Cont'd}

\section*{Technical Hints}
- Good starting point: desired postcondition (of the loop!)
- What, in addition to negated loop guard, is needed for it to hold?

\section*{Some Hints On Finding Invariants, Cont'd}

\section*{Technical Hints}
- Good starting point: desired postcondition (of the loop!)
- What, in addition to negated loop guard, is needed for it to hold?
- If the invariant candidate is not preserved by the loop body:
- Can you add stuff from the precondition?
- Does it need strengthening?
- Try to express the relation between partial and final result

\section*{Some Hints On Finding Invariants, Cont'd}

\section*{Technical Hints}
- Good starting point: desired postcondition (of the loop!)
- What, in addition to negated loop guard, is needed for it to hold?
- If the invariant candidate is not preserved by the loop body:
- Can you add stuff from the precondition?
- Does it need strengthening?
- Try to express the relation between partial and final result
- Simulate a few loop body executions to discover invariant patterns

\section*{Some Hints On Finding Invariants, Cont'd}

\section*{Technical Hints}
- Good starting point: desired postcondition (of the loop!)
- What, in addition to negated loop guard, is needed for it to hold?
- If the invariant candidate is not preserved by the loop body:
- Can you add stuff from the precondition?
- Does it need strengthening?
- Try to express the relation between partial and final result
- Simulate a few loop body executions to discover invariant patterns
- If the invariant is not initially valid:
- Can it be weakened such that the postcondition still follows?
- Did you forget an assumption in the requires clause?

\section*{Some Hints On Finding Invariants, Cont'd}

\section*{Technical Hints}
- Good starting point: desired postcondition (of the loop!)
- What, in addition to negated loop guard, is needed for it to hold?
- If the invariant candidate is not preserved by the loop body:
- Can you add stuff from the precondition?
- Does it need strengthening?
- Try to express the relation between partial and final result
- Simulate a few loop body executions to discover invariant patterns
- If the invariant is not initially valid:
- Can it be weakened such that the postcondition still follows?
- Did you forget an assumption in the requires clause?
- Several "rounds" of weakening/strengthening might be required

\section*{Some Hints On Finding Invariants, Cont'd}

\section*{Technical Hints}
- Good starting point: desired postcondition (of the loop!)
- What, in addition to negated loop guard, is needed for it to hold?
- If the invariant candidate is not preserved by the loop body:
- Can you add stuff from the precondition?
- Does it need strengthening?
- Try to express the relation between partial and final result
- Simulate a few loop body executions to discover invariant patterns
- If the invariant is not initially valid:
- Can it be weakened such that the postcondition still follows?
- Did you forget an assumption in the requires clause?
- Several "rounds" of weakening/strengthening might be required
- Use the KeY tool to iteratively try invariants:
- Loop treatment: None
- apply Loop Invariant \(\rightarrow\) Enter Loop Specification
- After each change of invariant make sure all cases are ok
- If not, prune and retry

\section*{Understanding Unclosed Proofs (see also p. 528 ff [KeYbook])}

Reasons why a proof may not close
- Buggy or incomplete specification
- Bug in program
- Maximal number of steps reached: restart or increase \# of steps
- Automatic proof search fails: apply some rules manually

\section*{Understanding Unclosed Proofs (see also p. \(528 f f\) [KeYbook])}

Reasons why a proof may not close
- Buggy or incomplete specification
- Bug in program
- Maximal number of steps reached: restart or increase \# of steps
- Automatic proof search fails: apply some rules manually

\section*{Understanding open proof goals}
- Follow the control flow from the proof root to the open goal
- Branch labels give useful hints
- Identify unprovable part of post condition or invariant
- Sequent remains always in "pre-state"

Constraints on program variables refer to value at start of program (exception: formula is behind update or modality)
\(-\mathrm{NB}: \Gamma \Longrightarrow 0=\) null, \(\Delta\) is equivalent to \(\Gamma, \circ \neq\) null \(\Longrightarrow \Delta\)

\section*{Literature for this Lecture}

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich, editors.

Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)
- W. Ahrendt, S. Grebing, Using the KeY Prover Chapter 15 in [KeYbook], p.528ff + Section 15.3 (also for Lab2)
- B. Beckert, R. Hähnle, M. Hentschel, P.H. Schmitt, Formal Verification with KeY: A Tutorial Chapter 16 in [KeYbook], except Section 16.6
further reading:
- B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java Chapter 3 in [KeYbook], Section 3.7

\section*{Master's Thesis Projects in Formal Methods}
see Formal Methods Master Theses on the web (click here).

\section*{Thank You}```

