
Formal Methods for Software Development
Introduction

Wolfgang Ahrendt

Department of Computer Science and Engineering
Chalmers University of Technology

and
University of Gothenburg

03 September 2019

FMSD: Introduction /GU 190903 1 / 48

Course Team

Teachers

I Wolfgang Ahrendt (WA) examiner, lecturer

I Oskar Abrahamsson (OA) teaching assistant

I Andreas Lööw (AL) teaching assistant

course assistant activities include:

I giving exercise classes

I correcting lab hand-ins
I student support via:

I e-mail
I meetings on e-mail request

I Oskar, room 5453
I Andreas, room 5461

FMSD: Introduction /GU 190903 2 / 48

Information Channels

Course Home Page

On Canvas, via Chalmers and GU.
Also used for online news and discussions.

FMSD: Introduction /GU 190903 3 / 48

Course Structure

Course Structure

Topic # Lectures # Exercises Lab

Intro 1 8 8

Modeling & Model Checking with
Promela & Spin

6 3 4

Specification & Verification with
JML & KeY

6 (+1?) 3 4

Promela & Spin abstract programs, model checking, automated

JML & KeY concrete Java, deductive verification, semi-automated

. . . more on this later!

FMSD: Introduction /GU 190903 4 / 48

Lectures

Lectures

I Please ask questions during lectures

I Please respond to my questions; ‘wrong’ answers highly welcome

I Slides appear online shortly after each lecture

FMSD: Introduction /GU 190903 5 / 48

Exercises

Exercises

I One exercise web page (almost) each week (6 in total)

I Discussed in next exercise class

I Play around with the exercises before coming to the class

I Exercises highly recommended

I Bring laptops if you have
(ideally w. installed tools or browser interfaces working)

FMSD: Introduction /GU 190903 6 / 48

Passing Criteria

I Oral examination in exam week

I Two lab hand-ins

I (No written end-exam)

I Oral exam and labs can be passed separately

FMSD: Introduction /GU 190903 7 / 48

Oral Exam

I individual, oral examination

I 30 min per student

I slots between 28 October and 1 November

I see course page for more information

FMSD: Introduction /GU 190903 8 / 48

Labs

Labs

I 2 Lab handins: Promela/Spin 04 Oct, JML/KeY 28 Oct

I 2 Lab Questions Sessions

I Submission via Fire, linked from course home page

I If submission is returned, roughly one week for correction

I You work in groups of two. No exception!a

You pair up by either:

1. talk to people
2. post request via Canvas
3. participate in pairing at first exercise session

In case all that is not sufficient, contact Oskar by e-mail.

aOnly PhD students have to work alone.

FMSD: Introduction /GU 190903 9 / 48

Web Presence

I Canvas

I Web Pages (linked from Canvas)

I Fire System (for lab submissions)

(inspect course schedule)

FMSD: Introduction /GU 190903 10 / 48

Course Evaluation

1. course evaluation group:
I student representatives

I randomly selected (Chalmers)
I volunteers (GU)

I one meeting during the course, one after

2. web questionnaire after the course

Randomly selected Chalmers students:

I Anna Brunzell

I David Hagerman Olzon

I Gabriel Lindeby

I Ramkumar Venkatesh

I Yonca Yunatci

GU students: please consider volunteering

FMSD: Introduction /GU 190903 11 / 48

Course Literature

I In part I, we partly use:

Ben-Ari Mordechai Ben-Ari
Principles of the Spin Model Checker
Springer, 2008
Ben-Ari received ACM award for outstanding
contributions to CS education. Recommended by
G. Holzmann. Excellent student text book.
(E-book at link.springer.com)

I Relevant for part II:

KeYbook W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle,
P. Schmitt, M. Ulbrich, editors.
Deductive Software Verification - The KeY Book
Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

FMSD: Introduction /GU 190903 12 / 48

link.springer.com
link.springer.com

Additional Literature

Holzmann Gerard J. Holzmann
The Spin Model Checker
Addison Wesley, 2004

BayerKatoen Christel Baier, Joost-Pieter Katoen
Principles of Model Checking
MIT Press, 2008

FMSD: Introduction /GU 190903 13 / 48

Connection to other Courses

Prerequisites

I Skills in first-order logic and temporal logic, e.g., from
I Logic in Computer Science, or
I Discrete Event Systems

I Skills in object-oriented programming (like Java)

Related courses (not assumed!)

I Concurrent Programming

I Finite Automata

I Testing, Debugging, and Verification

if you took any of those: nice
if not: don’t worry, we introduce everything we use here
FMSD: Introduction /GU 190903 14 / 48

Motivation:
Software Defects cause BIG Failures

Tiny faults in technical systems can have catastrophic consequences

In particular, this goes for software systems

I Ariane 5

I Mars Climate Orbiter

I London Ambulance Dispatch System

I NEDAP Voting Computer Attack

I ...

FMSD: Introduction /GU 190903 15 / 48

Motivation:
Software Defects cause OMNIPRESENT Failures

Ubiquitous Computing results in Ubiquitous Failures

Software is almost everywhere:

I Mobiles

I Clouds

I Smart cards

I Smart devices

I Cars

I Blockchains

I ...

software/specification quality is a growing commercial and legal issue

FMSD: Introduction /GU 190903 16 / 48

Achieving Reliability in Engineering

Well-known strategies from mechanical and civil engineering

I Precise calculations (or accurate estimations) of forces, stress, etc.

I Redundancy (“make it a bit stronger than necessary”)

I Robust design (single fault not catastrophic)

I Clear separation of subsystems

I Design follows patterns that are proven to work

FMSD: Introduction /GU 190903 17 / 48

Why is this So Difficult for Software?

I Software systems compute non-continuous functions.
Single bit-flip may change behaviour completely.

I Redundancy as replication does not help against bugs.
Redundant SW development only viable in special cases.

I Insufficient separation of subsystems.
Seemingly correct sub-systems may together behave incorrectly.

I Software designs have very high logical complexity.

I Most SW engineers untrained to address correctness.

I Cost efficiency favoured over reliability.

I Design practise for reliable software in immature state
for complex (e.g., distributed) systems.

FMSD: Introduction /GU 190903 18 / 48

How to Ensure Software Correctness/Compliance?

A central strategy: testing
(others: SW processes, reviews, libraries, . . .)

Testing against internal SW errors (“bugs”)

I find (hopefully) representative test configurations

I check intentional system behaviour on those

Testing against external faults

I inject faults (memory, communication) by simulation or radiation

I trace fault propagation

FMSD: Introduction /GU 190903 19 / 48

Limitations of Testing

I Testing shows presence of errors, not their absence
(exhaustive testing viable only for trivial systems)

I Representativeness of test cases/injected faults subjective
How to test for the unexpected? Rare cases?

I Testing is labour intensive, hence expensive

FMSD: Introduction /GU 190903 20 / 48

What are Formal Methods

I Rigorous methods for system design/development/analysis

I Mathematics and symbolic logic ⇒ formal

I Increase confidence in a system
I Two aspects:

I System requirements
I System implementation

I Formalise both
I Use tools for

I exhaustive search for failing scenario, or
I mechanical proof that implementation satisfies requirements

FMSD: Introduction /GU 190903 21 / 48

What are Formal Methods for

I Complement other analysis and design methods

I Increase confidence in system correctness

I Good at finding bugs
(in code and specification)

I Ensure certain properties of the system (model)

I Should ideally be as automated as possible

and

I Training in Formal Methods increases high quality development skills

FMSD: Introduction /GU 190903 22 / 48

Specification — What a System Should Do

I Simple properties
I Safety properties

Something bad will never happen (e.g., green light mutual exclusion)
I Liveness properties

Something good will happen eventually

I General properties of concurrent/distributed systems

I deadlock-free, no starvation, fairness, ...

I Non-functional properties

I Execution time, memory, usability, . . .

I Full behavioural specification
I Code functionality described by contracts
I Data consistency, system invariants

(in particular for efficient, i.e., redundant, data representations)
I Modularity, encapsulation
I Refinement relation

FMSD: Introduction /GU 190903 23 / 48

The Main Point of Formal Methods is Not

I to show correctness of entire systems

I to replace testing

I to replace good design practises

There is no silver bullet!

I No correct system w/o clear requirements & good design

FMSD: Introduction /GU 190903 24 / 48

But . . .

I Formal proof can replace (infinitely) many test cases

I Formal methods improve the quality of specs
(even without formal verification)

I Formal methods guarantee specific properties of system (model)

FMSD: Introduction /GU 190903 25 / 48

A Fundamental Fact

Formalisation of system requirements is hard

Let’s see why . . .

FMSD: Introduction /GU 190903 26 / 48

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

Abstraction

FMSD: Introduction /GU 190903 27 / 48

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

over-simplification

e.g., zero delay

FMSD: Introduction /GU 190903 27 / 48

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

missing requirement

e.g., max stack size

FMSD: Introduction /GU 190903 27 / 48

Difficulties in Creating Formal Models

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

wrong modeling

e.g., ZZ vs int

FMSD: Introduction /GU 190903 27 / 48

Formalization Helps to Find Bugs in Specs

Errors in specifications are as common as errors in code,
but their discovery gives deep insights in (mis)conceptions of the system.

I Wellformedness and consistency of formal specs partly
machine-checkable

I Declared signature (symbols) helps to spot incomplete specs

I Failed verification of implementation against spec gives feedback on
erroneous formalization

FMSD: Introduction /GU 190903 28 / 48

Another Fundamental Fact

Proving properties of systems can be hard

FMSD: Introduction /GU 190903 29 / 48

Level of System (Implementation) Description

I Abstract level
I Finitely many states (bounded size datatypes)
I Simplification, unfaithful modeling inevitable
I Automated proofs are (in principle) possible

I Concrete level
I Unbounded size datatypes

(pointer chains, dynamic containers, streams)
I Complex datatypes and control structures
I Realistic programming model (e.g., Java)
I Automated proofs hard or impossible!

FMSD: Introduction /GU 190903 30 / 48

Expressiveness of Specification

I Simple
I Simple or general

properties
I Finitely many case

distinctions
I Approximation,

low precision
I Automated proofs are

(in principle) possible

I Complex
I Full behavioural

specification
I Quantification over

infinite or large domains
I High precision,

tight modeling
I Automated proofs

hard or impossible!

FMSD: Introduction /GU 190903 31 / 48

Main Approaches

Abstract programs, Abstract programs,
Simple properties Complex properties

Concrete programs, Concrete programs,
Simple properties Complex propertiesDeductive

Verification,
2nd part
of course

Model
Checking,
1st part

of course

FMSD: Introduction /GU 190903 32 / 48

Proof Automation

I “Automated” Proof
(“batch-mode”)
I No interaction (or lemmas) necessary
I Tuning of tool parameters necessary
I Formal specification still “by hand”

I “Semi-Automated” Proof
(“interactive”)
I Interaction (or lemmas) may be required
I Need certain knowledge of tool internals

Intermediate inspection can help
I User steps are checked by tool

FMSD: Introduction /GU 190903 33 / 48

Model Checking with Spin

System Model

byte n = 0;

active proctype P() {

...

}

active proctype Q() {

...

}

System Property

[] ! (criticalSectP && criticalSectQ)

Model
Checker

48

criticalSectP= 0 1 1
criticalSectQ= 1 0 1

FMSD: Introduction /GU 190903 34 / 48

Model Checking in Industry—Examples

I Hardware verification
I Good match between limitations of methods and application
I Intel, Motorola, AMD, . . .

I Software verification
I Specialized software: control systems, protocols
I Typically no direct checking of executable system, but of abstractions
I Bell Labs, Microsoft

FMSD: Introduction /GU 190903 35 / 48

A Major Case Study with Spin

Checking feature interaction for telephone call processing software

I Software for PathStar c© server from Lucent Technologies

I Automated abstraction of unchanged C code into Promela

I Web interface, with Spin as back-end, to:
I determine properties (ca. 20 temporal formulas)
I invoke verification runs
I report error traces

I Finds error trace, reported as C execution trace

I Work farmed out to 16 computers, daily, overnight runs

I 18 months, 300 versions of system model, 75 bugs found

I Strength: detection of undesired feature interactions
(difficult with traditional testing)

I Main challenge: defining meaningful properties

FMSD: Introduction /GU 190903 36 / 48

Deductive Verification with KeY

Java Code Formal specification

correct?

Program Verification System

correct4

Proof rules establish relation “implementation conforms to specs”

FMSD: Introduction /GU 190903 37 / 48

Deductive Verification in Industry—Examples

I Hardware verification
I For complex systems, mostly floating-point processors
I Intel, Motorola, AMD, . . .

I Software verification
I Safety critical systems:

I Paris driver-less metro (Meteor)
I Emergency closing system in North Sea

I Libraries
I Implementations of Protocols

FMSD: Introduction /GU 190903 38 / 48

Major Case Studies with KeY

Java Card 2.2.1 API Reference Implementation

I Reference implementation and full functional specification
I All Java Card 2.2.1 API classes and methods

I 60 classes; ca. 5,000 LoC (250kB) source code
I specification ca. 10,000 LoC

I Conformant to implementation on actual smart cards
I All methods fully verified against their spec

I 293 proofs; 5–85,000 nodes

I Total effort several person months

I Most proofs fully automatic

I Main challenge: getting specs right

FMSD: Introduction /GU 190903 39 / 48

Major Case Studies with KeY: Timsort

Timsort

Hybrid sorting algorithm (insertion sort + merge sort) optimized for
partially sorted arrays (typical for real-world data).

Facts

I Designed by Tim Peters (for Python)

I Since Java 1.7 default algorithm for non-primitive arrays/collections

Timsort is used in

I Java (standard libraries OpenJDK, Oracle)

I Python (standard library), used by Google

I Android (standard library), used by Google

I ... and many more languages / frameworks!

FMSD: Introduction /GU 190903 40 / 48

Timsort: People

I Tim Peters

I Sorting Algorithm Designer

I Python Guru

I Stijn de Gouw

I Assistant Professor

I Formerly postman in the NL

I Interested in sorting for
professional reasons

FMSD: Introduction /GU 190903 41 / 48

Timsort: People

I Tim Peters

I Sorting Algorithm Designer

I Python Guru

I Stijn de Gouw

I Assistant Professor

I Formerly postman in the NL

I Interested in sorting for
professional reasons

FMSD: Introduction /GU 190903 41 / 48

Major Case Studies with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

I java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

I KeY verification of OpenJDK implementation revealed bug.

I Same bug present in Android SDK, Phyton library, Haskell library

Verified Fix using KeY

I Fixing the implementation

I Verified new version with KeY

FMSD: Introduction /GU 190903 42 / 48

Major Case Studies with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

I java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

I KeY verification of OpenJDK implementation revealed bug.

I Same bug present in Android SDK, Phyton library, Haskell library

Verified Fix using KeY

I Fixing the implementation

I Verified new version with KeY

Some researchers found an error in the

logic of merge collapse, explained here,

and with
corrected code shown in

. . .

It should be fixed anyway, and their sug-

gested fix looks good to
me.

Tim
Peters via Python-Bugtra

cker

FMSD: Introduction /GU 190903 42 / 48

Major Case Studies with KeY

Found Bug in Java Libraries’ main Sorting Method using KeY

I java.util.Collections.sort and java.util.Arrays.sort

implement Timsort

I KeY verification of OpenJDK implementation revealed bug.

I Same bug present in Android SDK, Phyton library, Haskell library

Verified Fix using KeY

I Fixing the implementation

I Verified new version with KeY

Some researchers found an error in the

logic of merge collapse, explained here,

and with
corrected code shown in

. . .

It should be fixed anyway, and their sug-

gested fix looks good to
me.

Tim
Peters via Python-Bugtra

cker

Congratulations to Stijn de Gouw et al.

for finding and fixing a bug in TimSort

using formal methods!Joshua Bloch via Twitter

FMSD: Introduction /GU 190903 42 / 48

Tool Support is Essential

Some Reasons for Using Tools

I Automate repetitive tasks

I Avoid typos, etc.

I Cope with large/complex programs

I Make verification certifiable

Tools used in this course:

Spin to verify Promela programs against Temporal Logic specs

Spin web interface developed for this course!
jSpin front-end for Spin

KeY to verify Java programs against contracts in JML

All are free and run on Windows/Unixes/Mac.
Install first Spin and jSpin on your computer,
or make sure the Spin web interface works.

FMSD: Introduction /GU 190903 43 / 48

You will gain experience in ...

I Modelling, and modelling languages

I Specification, and specification languages

I In depth analysis of possible system behaviour

I Typical types of errors

I Reasoning about system (mis)behaviour

I ...

FMSD: Introduction /GU 190903 44 / 48

Learning Outcomes—Knowledge and Understanding

I Explain the potential and limitations of using logic based verification
methods for assessing and improving software correctness

I Identify what can and what cannot be expressed by certain
specification/modeling formalisms

I Identify what can and cannot be analyzed with certain logics and
proof methods

FMSD: Introduction /GU 190903 45 / 48

Learning Outcomes—Skills and Abilities

I Express safety and liveness properties of (concurrent) programs in a
formal way

I Describe the basics of verifying safety and liveness properties via
model checking

I Successfully employ tools which prove or disprove temporal
properties

I Write formal specifications of object-oriented system units, using the
concepts of method contracts and class invariants

I Describe how the connection between programs and formal
specifications can be represented in a program logic

I Verify functional properties of simple Java programs with a
verification tool

FMSD: Introduction /GU 190903 46 / 48

Learning Outcomes—Judgment and Approach

I Judge and communicate the significance of correctness for software
development

I Employ abstraction, modelling, and rigorous reasoning when
approaching the development of correctly functioning software

FMSD: Introduction /GU 190903 47 / 48

Literature for this Lecture

FM in SE B. Beckert, R. Hähnle, T. Hoare, D. Smith, C. Green, S.
Ranise, C. Tinelli, T. Ball, and S. K. Rajamani: Intelligent
Systems and Formal Methods in Software Engineering.
IEEE Intelligent Systems, 21(6):71–81, 2006
(Access to e-version via Chalmers Library)

KeY R. Hähnle: Quo Vadis Formal Verification. In: W. Ahrendt,
B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, M. Ulbrich
editors. Vol 10001 of LNCS, Springer, 2016
(E-book at link.springer.com)

Spin Gerard J. Holzmann: A Verification Model of a Telephone
Switch. In: The Spin Model Checker, Chapter 14, Addison
Wesley, 2004

FMSD: Introduction /GU 190903 48 / 48

link.springer.com

	Organisation
	Motivation
	Formalisation

