
Sample solutions for the examination of
Finite automata theory and formal languages

(DIT321/TMV027)
from 2019-03-21

Nils Anders Danielsson

1. The DFA corresponds to the following system of equations between lan-
guages, where 𝑒𝑎 corresponds to the start state:

𝑒𝑎 = (0 + 1)𝑒𝑏 + 2𝑒𝑑
𝑒𝑏 = 𝜀 + 1𝑒𝑐 + (0 + 2)𝑒𝑑
𝑒𝑐 = 0𝑒𝑏 + (1 + 2)𝑒𝑐
𝑒𝑑 = (0 + 1 + 2)𝑒𝑑

Using Arden’s lemma we get the following (unique) solutions:

𝑒𝑑 = (0 + 1 + 2)∗∅ = ∅
𝑒𝑐 = (1 + 2)∗0𝑒𝑏
𝑒𝑏 = (1(1 + 2)∗0)∗(𝜀 + (0 + 2)∅) = (1(1 + 2)∗0)∗

𝑒𝑎 = (0 + 1)(1(1 + 2)∗0)∗ + 2∅ = (0 + 1)(1(1 + 2)∗0)∗

Thus one possible answer is (0 + 1)(1(1 + 2)∗0)∗.

2. The Turing machine is (𝑄, { 0, 1 } , Γ, 𝛿, start, ␣, { accept }), where 𝑄, Γ
and 𝛿 are defined in the following way:

𝑄 = { start, skip‐ones, check‐space, accept }
Γ = { 0, 1, ␣ }

𝛿 ∈ 𝑄 × Γ ⇀ 𝑄 × Γ × { L, R }
𝛿(start, 0) = (skip‐ones, 0, R)
𝛿(skip‐ones, 1) = (skip‐ones, 1, R)
𝛿(skip‐ones, 0) = (check‐space, 0, R)
𝛿(check‐space, ␣) = (accept, ␣, R)

The machine always moves to the right, and it checks that the symbols
that are encountered are a zero, an arbitrary number of ones, another
zero, and a blank. In that case it accepts, and in any other case it rejects.

1

3. (a) If the Bin transformation is applied to 𝐺, then one of the possible
results is the grammar

𝐺1 = ({ 𝑆, 𝑆1, 𝐴, 𝐵, 𝐵1 } , { 𝑎, 𝑏 } , 𝑃1, 𝑆),
where the set of productions 𝑃1 is defined in the following way:

𝑆 → 𝐴𝑆1
𝑆1 → 𝐵𝐴
𝐴 → 𝜀 | 𝑎
𝐵 → 𝐵𝐵1 | 𝑏𝑏
𝐵1 → 𝑏𝐵

The grammar 𝐺1 contains a single nullable nonterminal, 𝐴. If the
Del transformation is applied to 𝐺1, then we obtain the grammar

𝐺2 = ({ 𝑆, 𝑆1, 𝐴, 𝐵, 𝐵1 } , { 𝑎, 𝑏 } , 𝑃2, 𝑆),
where the set of productions 𝑃2 is defined in the following way:

𝑆 → 𝐴𝑆1 | 𝑆1
𝑆1 → 𝐵𝐴 | 𝐵
𝐴 → 𝑎
𝐵 → 𝐵𝐵1 | 𝑏𝑏
𝐵1 → 𝑏𝐵

The grammar 𝐺2 contains three nontrivial unit pairs, (𝑆, 𝑆1), (𝑆1, 𝐵)
and (𝑆, 𝐵). If the Unit transformation is applied to 𝐺2, then we
obtain the grammar

𝐺3 = ({ 𝑆, 𝑆1, 𝐴, 𝐵, 𝐵1 } , { 𝑎, 𝑏 } , 𝑃3, 𝑆),
where the set of productions 𝑃3 is defined in the following way:

𝑆 → 𝐴𝑆1 | 𝐵𝐴 | 𝐵𝐵1 | 𝑏𝑏
𝑆1 → 𝐵𝐴 | 𝐵𝐵1 | 𝑏𝑏
𝐴 → 𝑎
𝐵 → 𝐵𝐵1 | 𝑏𝑏
𝐵1 → 𝑏𝐵

If the Term transformation is applied to 𝐺3, then one of the possible
results is the grammar

𝐺′ = ({ 𝑆, 𝑆1, 𝐴, 𝐵, 𝐵1, 𝐵2 } , { 𝑎, 𝑏 } , 𝑃 ′, 𝑆),
where the set of productions 𝑃 ′ is defined in the following way:

𝑆 → 𝐴𝑆1 | 𝐵𝐴 | 𝐵𝐵1 | 𝐵2𝐵2
𝑆1 → 𝐵𝐴 | 𝐵𝐵1 | 𝐵2𝐵2
𝐴 → 𝑎
𝐵 → 𝐵𝐵1 | 𝐵2𝐵2
𝐵1 → 𝐵2𝐵
𝐵2 → 𝑏

2

The use of these four transformations, in this order, is guaranteed to
produce a grammar 𝐺′ in Chomsky normal form satisfying 𝐿(𝐺′) =
𝐿(𝐺) ∖ { 𝜀 }. In this case we have 𝜀 ∉ 𝐿(𝐺) (note that 𝑆 is not
nullable), so 𝐿(𝐺′) = 𝐿(𝐺).

(b) The CYK table:

∅
{ 𝑆 } { 𝐵1 }

∅ { 𝑆, 𝑆1, 𝐵 } { 𝑆, 𝑆1, 𝐵 }
{ 𝐴 } { 𝐵2 } { 𝐵2 } { 𝐵2 }

𝑎 𝑏 𝑏 𝑏
(c) We have 𝑎𝑏𝑏𝑏 ∈ 𝐿(𝐺) if the start symbol 𝑆 is a member of the CYK

table’s “topmost” cell. In this case it is not, so 𝑎𝑏𝑏𝑏 ∉ 𝐿(𝐺).
4. (a) Either an 𝑎 followed by zero or more 𝑏’s, or zero or more repetitions

of 𝑎𝑏, or a 𝑏 followed by zero or more 𝑏’s.
(b) First note that

𝑒 = 𝑎𝑏∗ + (𝑎𝑏)∗ + 𝑏𝑏∗

= (𝑎 + 𝑏)𝑏∗ + (𝑎𝑏)∗.

Let us convert the regular expression 𝑒′ = (𝑎 + 𝑏)𝑏∗ + (𝑎𝑏)∗ to an
𝜀-NFA 𝐴. Instead of using the algorithm from the course text book
(which can yield rather large automata) I give 𝐴 directly and prove
that 𝐿(𝐴) = 𝐿(𝑒′). Here is 𝐴 (its alphabet is { 𝑎, 𝑏 }):

0

1 2

3 4

𝜀

𝜀

𝑎, 𝑏
𝑏

𝑎

𝑏

This 𝜀-NFA corresponds to the following system of equations between
languages, where 𝑒0 corresponds to the start state:

𝑒0 = 𝑒1 + 𝑒3
𝑒1 = (𝑎 + 𝑏)𝑒2
𝑒2 = 𝜀 + 𝑏𝑒2
𝑒3 = 𝜀 + 𝑎𝑒4
𝑒4 = 𝑏𝑒3

3

Using Arden’s lemma we get the following (unique) solutions: 𝑒3 =
(𝑎𝑏)∗, 𝑒2 = 𝑏∗, 𝑒1 = (𝑎 + 𝑏)𝑏∗ and 𝑒0 = (𝑎 + 𝑏)𝑏∗ + (𝑎𝑏)∗. Because
𝑒0 = 𝑒′ we have 𝐿(𝐴) = 𝐿(𝑒′).
If the 𝜀-NFA 𝐴 is converted to a DFA using the subset construction
(with inaccessible states omitted), then we obtain the following DFA
(possibly with different names for the states):

{ 0, 1, 3 } { 2, 3 }

{ 2, 4 }

{ 4 }

{ 2 }

{ 3 }

∅

𝑎

𝑏
𝑎

𝑏

𝑎

𝑏
𝑎

𝑏

𝑎
𝑏 𝑎

𝑏
𝑎, 𝑏

Let us now minimise this DFA. Note first that all of its states are
accessible. If the algorithm from the course is used to find equivalent
states, then we see that every state of this DFA is distinguishable
from every other state. Thus the DFA is already minimal.

5. (a) The grammar is 𝐺 = ({ 𝑆 } , { 0, 1 } , 𝑃 , 𝑆), where the set of produc-
tions 𝑃 is defined by 𝑆 → 0 | 𝑆1𝑆. See parts (b) and (c) for a proof
showing that 𝐿(𝐺) = 𝑋.

(b) The property 𝑋 ⊆ 𝐿(𝐺) follows from ∀𝑤 ∈ 𝑋. 𝑤 ∈ 𝐿(𝐺, 𝑆). Let
us prove the latter statement by induction on the structure of the
string, seen as a member of 𝑋. We have two cases to consider:

• The string 𝑤 is 0. In this case we can construct the following
derivation showing that 𝑤 ∈ 𝐿(𝐺, 𝑆):1

𝑆 → 0 ∈ 𝑃
𝜀 ∈ 𝐿∗(𝐺, 𝜀)
0 ∈ 𝐿∗(𝐺, 0)

0 ∈ 𝐿(𝐺, 𝑆)
1Antecedents of the form “𝑎 is a terminal” or “𝐴 is a nonterminal” are omitted from this

and subsequent derivations.

4

• The string 𝑤 is 𝑢1𝑣 where 𝑢, 𝑣 ∈ 𝑋. The inductive hypothesis
for 𝑢 tells us that 𝑢 ∈ 𝐿(𝐺, 𝑆), and similarly 𝑣 ∈ 𝐿(𝐺, 𝑆). Thus
we can construct a derivation of 𝑤 ∈ 𝐿(𝐺, 𝑆) in the following
way:

𝑆 → 𝑆1𝑆 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑆)

𝑣 ∈ 𝐿(𝐺, 𝑆) 𝜀 ∈ 𝐿∗(𝐺, 𝜀)
𝑣 ∈ 𝐿∗(𝐺, 𝑆)

1𝑣 ∈ 𝐿∗(𝐺, 1𝑆)
𝑢1𝑣 ∈ 𝐿∗(𝐺, 𝑆1𝑆)

𝑢1𝑣 ∈ 𝐿(𝐺, 𝑆)
(c) The property 𝐿(𝐺) ⊆ 𝑋 follows from ∀𝑤 ∈ 𝐿(𝐺, 𝑆). 𝑤 ∈ 𝑋. Let

us prove this by complete induction on the length of the string. The
derivation of 𝑤 ∈ 𝐿(𝐺, 𝑆) must end in the following way:

𝑆 → 𝛼 ∈ 𝑃 𝑤 ∈ 𝐿∗(𝐺, 𝛼)
𝑤 ∈ 𝐿(𝐺, 𝑆)

There are two possibilities for 𝛼:
• 𝛼 = 0: In this case the derivation must end in the following way,

and 𝑤 must be equal to 0:

𝑆 → 0 ∈ 𝑃
𝜀 ∈ 𝐿∗(𝐺, 𝜀)
0 ∈ 𝐿∗(𝐺, 0)

0 ∈ 𝐿(𝐺, 𝑆)
We have 𝑤 = 0 ∈ 𝑋.

• 𝛼 = 𝑆1𝑆: In this case the derivation must end in the following
way, and 𝑤 must be equal to 𝑢1𝑣:

𝑆 → 𝑆1𝑆 ∈ 𝑃
𝑢 ∈ 𝐿(𝐺, 𝑆)

𝑣 ∈ 𝐿(𝐺, 𝑆) 𝜀 ∈ 𝐿∗(𝐺, 𝜀)
𝑣 ∈ 𝐿∗(𝐺, 𝑆)

1𝑣 ∈ 𝐿∗(𝐺, 1𝑆)
𝑢1𝑣 ∈ 𝐿∗(𝐺, 𝑆1𝑆)

𝑢1𝑣 ∈ 𝐿(𝐺, 𝑆)
Note that 𝑢, 𝑣 ∈ 𝐿(𝐺, 𝑆), and furthermore |𝑢| < |𝑤| and |𝑣| <
|𝑤|. The inductive hypothesis thus implies that 𝑢 ∈ 𝑋 and 𝑣 ∈
𝑋. We get that 𝑤 = 𝑢1𝑣 ∈ 𝑋.

6. (a) The language is equal to 𝑀 ∩ 𝑁 , where

𝑀 = { 𝑤 ∈ { 0, 1 }∗ ∣ |𝑤| < 7 } ,
𝑁 = { 𝑤 ∈ { 0, 1 }∗ ∣ ∃𝑢, 𝑣 ∈ { 0, 1 }∗ . 𝑤 = 𝑢11𝑣 }

= { 0, 1 }∗ { 11 } { 0, 1 }∗ ,

5

and the complements are taken with respect to the language { 0, 1 }∗.
𝑀 is regular, because it is finite (and a finite language { 𝑤1, …, 𝑤𝑛 },
where 𝑛 ∈ ℕ, is regular because it is generated by the regular expres-
sion 𝑤1 +⋯+𝑤𝑛). 𝑁 is regular, because it is generated by the regular
expression (0 + 1)∗11(0 + 1)∗. Finally the set of regular languages is
closed under complementation and intersection, so 𝑀 ∩ 𝑁 is regular.
Every regular language is context-free, so the language is also context-
free.

(b) The language is finite, so it is regular, and thus also context-free.

6

