Finite automata theory and formal languages (DIT321, TMV027)

Nils Anders Danielsson, partly based on slides by Ana Bove
2019-01-28

Today

- Structural induction.
- Some concepts from automata theory.

Structural induction

Structural induction

- For a given inductively defined set we have a corresponding induction principle.
- Example:
$\overline{\text { zero } \in \mathbb{N}} \quad \frac{n \in \mathbb{N}}{\operatorname{suc}(n) \in \mathbb{N}}$

In order to prove $\forall n \in \mathbb{N} . P(n)$:

- Prove P (zero).
- For all $n \in \mathbb{N}$, prove that $P(n)$ implies $P(\operatorname{suc}(n))$.

Structural induction

- For a given inductively defined set we have a corresponding induction principle.
- Example:

$$
\overline{\text { true } \in \text { Bool }} \quad \overline{\text { false } \in \text { Bool }}
$$

In order to prove $\forall b \in$ Bool. $P(b)$:

- Prove P (true).
- Prove P (false).

Structural induction

- For a given inductively defined set we have a corresponding induction principle.
- Example:

$$
\frac{x \in A \quad x s \in \operatorname{List}(A)}{\operatorname{cons}(x, x s) \in \operatorname{List}(A)}
$$

In order to prove $\forall x s \in \operatorname{List}(A) . P(x s)$:

- Prove $P($ nil $)$.
- For all $x \in A$ and $x s \in \operatorname{List}(A)$, prove that $P(x s)$ implies $P(\operatorname{cons}(x, x s))$.

Pattern

- An inductively defined set:

$$
\frac{x \in A \quad \ldots \quad d \in D(A)}{\mathrm{c}(x, \ldots, d) \in D(A)}
$$

Note that x is a non-recursive argument, and that d is recursive.

- In order to prove $\forall d \in D(A) . P(d)$:
- For all $x \in A, \ldots, d \in D(A)$, prove that ... and $P(d)$ imply $P(\mathrm{c}(x, \ldots, d))$.

One inductive hypothesis for each recursive argument.

What is the induction principle for

$n \in \mathbb{N}$
 $l, r \in$ Tree
 $\operatorname{leaf}(n) \in$ Tree
 node $(l, r) \in$ Tree

1. $(\forall n \in \mathbb{N}$. $P(\operatorname{leaf}(n))) \wedge$
$(\forall l, r \in$ Tree. $P(l) \wedge P(r)) \Rightarrow P(\operatorname{node}(l, r))$.
2. $(\forall n \in \mathbb{N}$. $P(\operatorname{leaf}(n))) \wedge$
$(\forall l, r \in$ Tree. $P(l) \wedge P(r) \Rightarrow P(\operatorname{node}(l, r))) \Rightarrow$
$(\forall t \in$ Tree. $P(t))$.
3. $(\forall n \in \mathbb{N}$. $P(\operatorname{leaf}(n))) \wedge$
$(\forall t \in$ Tree. $P(t) \Rightarrow P(\operatorname{node}(t, t))) \Rightarrow$
$(\forall t \in$ Tree. $P(t))$.

Some functions

Recall from last lecture:

$$
\begin{aligned}
& \text { length } \in \operatorname{List}(A) \rightarrow \mathbb{N} \\
& \text { length }(\operatorname{nil})=0 \\
& \text { length }(\operatorname{cons}(x, x s))=1+\operatorname{length}(x s)
\end{aligned}
$$

Another function:

$$
\begin{aligned}
& \operatorname{append} \in \operatorname{List}(A) \rightarrow \operatorname{List}(A) \rightarrow \operatorname{List}(A) \\
& \operatorname{append}(\operatorname{nil}, y s)=y s \\
& \operatorname{append}(\operatorname{cons}(x, x s), y s)=\operatorname{cons}(x, \operatorname{append}(x s, y s))
\end{aligned}
$$

Lemma

$\forall x s, y s \in \operatorname{List}(A)$.
length $(\operatorname{append}(x s, y s))=$ length $(x s)+$ length $(y s)$.

Proof.

Let us prove the property

$$
\begin{aligned}
P(x s):= & \forall y s \in \operatorname{List}(A) . \\
& \text { length }(\operatorname{append}(x s, y s))= \\
& \text { length }(x s)+\operatorname{length}(y s)
\end{aligned}
$$

by induction on the structure of the list.

Lemma

$\forall x s, y s \in \operatorname{List}(A)$.
length $(\operatorname{append}(x s, y s))=\operatorname{length}(x s)+$ length $(y s)$.

Proof.

Case nil:
length $($ append $($ nil,$y s))=$
length $(y s)=$
$0+$ length $(y s)=$
length(nil) + length (ys)

Lemma

$\forall x s, y s \in \operatorname{List}(A)$.
length $(\operatorname{append}(x s, y s))=$ length $(x s)+$ length $(y s)$.

Proof.

Case cons $(x, x s)$:
length $(\operatorname{append}(\operatorname{cons}(x, x s), y s))=$
length $(\operatorname{cons}(x, \operatorname{append}(x s, y s)))=$
$1+$ length $(\operatorname{append}(x s, y s))=\{$ By the IH, $P(x s)$.
$1+($ length $(x s)+$ length $(y s))=$
$(1+$ length $(x s))+$ length $(y s)=$
length $(\operatorname{cons}(x, x s))+$ length $(y s)$

Prove $\forall x s, y s, z s \in \operatorname{List}(A)$. $\operatorname{append}(x s, \operatorname{append}(y s, z s))=$ $\operatorname{append}(\operatorname{append}(x s, y s), z s)$ by induction on the structure of one of the lists. Which list do you think works best?

1. The first.
2. The second.
3. The third.

Induction/recursion

- Inductively defined sets: inference rules with constructors.
- Recursion (primitive recursion): recursive calls only for recursive arguments $(f(\mathrm{c}(x, d))=\ldots f(d) \ldots)$.
- Structural induction: inductive hypotheses for recursive arguments $(P(d) \Rightarrow P(\mathrm{c}(x, d)))$.

Some concepts from automata

theory

Alphabets and strings

- An alphabet is a finite, nonempty set.

$$
\begin{aligned}
& \{a, b, c, \ldots, z\} . \\
& \{0,1, \ldots, 9\} .
\end{aligned}
$$

- A string (or word) over the alphabet Σ is a member of $\operatorname{List}(\Sigma)$.

Notation

- Σ^{*} instead of $\operatorname{List}(\Sigma)$.
- ε instead of nil or [].
- $a w$ instead of cons (a, w).
- a instead of cons $(a$, nil) or $[a]$.
- $a b c$ instead of $[a, b, c]$.
- $u v$ instead of $\operatorname{append}(u, v)$.
- $|w|$ instead of length(w).

More notation/terminology

- Σ^{+}: Nonempty strings, $\left\{w \in \Sigma^{*} \mid w \neq \varepsilon\right\}$.
- The word u is a prefix of v if $v=u w$ for some w.
- The word u is a suffix of v if $v=w u$ for some w.

Exponentiation

- Σ^{n} : Strings of length $n,\left\{w \in \Sigma^{*}| | w \mid=n\right\}$.
- Alternative definition of $\Sigma^{n} \subseteq \Sigma^{*}$:

$$
\begin{aligned}
& \Sigma^{0}=\{\varepsilon\} \\
& \Sigma^{n+1}=\left\{a w \mid a \in \Sigma, w \in \Sigma^{n}\right\}
\end{aligned}
$$

- Similarly, $-{ }^{n} \in \Sigma^{*} \rightarrow \Sigma^{*}$:

$$
\begin{aligned}
& w^{0}=\varepsilon \\
& w^{n+1}=w w^{n}
\end{aligned}
$$

Which of the following propositions are valid? The alphabet is $\{a, b, c\}$.

1. $|u v|=|u|+|v|$.
2. $|u v|=|u||v|$.
3. $\left|w^{n}\right|=n$.
4. $u v=v u$.
5. The word ε is a prefix of w.

6 . The word w is a suffix of $(a w)^{3}$.

Languages

A language over an alphabet Σ is a set $L \subseteq \Sigma^{*}$.

- Typical programming languages.
- Typical natural languages? (Are they well-defined?)
- Other examples, for instance the even natural numbers expressed in binary notation, which is a language over $\{0,1\}$.

Operations

- Concatenation: $L M=\{u v \mid u \in L, v \in M\}$.
- Exponentiation:

$$
\begin{aligned}
& L^{0}=\{\varepsilon\} \\
& L^{n+1}=L L^{n}
\end{aligned}
$$

- The Kleene star $L^{*}=\bigcup_{n \in \mathbb{N}} L^{n}$.
- These definitions are consistent with previous ones for alphabets:

$$
\begin{aligned}
& \Sigma^{n}=\left\{w \in \Sigma^{*}| | w \mid=1\right\}^{n} . \\
& \Sigma^{*}=\left\{w \in \Sigma^{*}| | w \mid=1\right\}^{*} .
\end{aligned}
$$

Which of the following propositions are valid? The alphabet is $\{0,1,2\}$.

$$
\begin{aligned}
& \text { 1. } \forall w \in L^{n} .|w|=n \text {. } \\
& \text { 2. } L M=M L \text {. } \\
& \text { 3. } L(M \cup N)=L M \cup L N \text {. } \\
& \text { 4. } L M \cap L N \subseteq L(M \cap N) \text {. }
\end{aligned}
$$

$$
\text { 5. } L^{*} L^{*} \subseteq L^{*} \text {. }
$$

Today

- Structural induction.
- Some concepts from automata theory.

Next lecture

- Deterministic finite automata.
- Deadline for the next quiz: 2019-01-28, 17:00.
- Deadline for the first assignment: 2019-02-03, 23:59.

