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Today

▶ Pushdown automata.
▶ Turing machines.



Pushdown
automata



Pushdown automata

A pushdown automaton (PDA) can be given as a
7-tuple (𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 ):
▶ A finite set of states (𝑄).
▶ An alphabet (Σ with 𝜀 ∉ Σ).
▶ A stack alphabet (Γ).
▶ A transition function

(𝛿 ∈ 𝑄 × ({ 𝜀 } ∪ Σ1) × Γ → ℘(𝑄 × Γ∗)).
▶ A start state (𝑞0 ∈ 𝑄).
▶ A start symbol (𝑍0 ∈ Γ).
▶ A set of accepting states (𝐹 ⊆ 𝑄).



Pushdown automata

An instantaneous description (ID) for a given PDA
is a triple (𝑞, 𝑤, 𝛾):
▶ The current state (𝑞 ∈ 𝑄).
▶ The remainder of the input string (𝑤 ∈ Σ∗).
▶ The current stack (𝛾 ∈ Γ∗).



Pushdown automata

The following relation between IDs defines what
kinds of transitions are possible:

𝑢 ∈ { 𝜀 } ∪ Σ1 (𝑞, 𝛼) ∈ 𝛿(𝑝, 𝑢, 𝑍)
(𝑝, 𝑢𝑣, 𝑍𝛾) ⊢ (𝑞, 𝑣, 𝛼𝛾)

The reflexive transitive closure of ⊢ can be defined
inductively:

𝐼 ⊢∗ 𝐼
𝐼 ⊢ 𝐽 𝐽 ⊢∗ 𝐾

𝐼 ⊢∗ 𝐾



Consider the PDA
𝑃 = ({𝑞}, {0, 1}, {𝐴, 𝐵}, 𝛿, 𝑞, 𝐵, {𝑞}), where 𝛿 is
defined in the following way:

𝛿(𝑞, 𝜀, 𝐴) = {(𝑞, 𝜀)} 𝛿(𝑞, 𝜀, 𝐵) = {(𝑞, 𝐵𝐴)}
𝛿(𝑞, 0, 𝐴) = ∅ 𝛿(𝑞, 0, 𝐵) = {(𝑞, 𝜀)}
𝛿(𝑞, 1, 𝐴) = ∅ 𝛿(𝑞, 1, 𝐵) = {(𝑞, 𝐴𝐵)}

Which of the following propositions are true
for 𝑃 ?

1. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 𝜀, 𝜀)
2. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 𝜀, 𝐴𝐴𝐴)
3. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 1, 𝜀)
4. (𝑞, 01, 𝐴𝐵) ⊢∗ (𝑞, 1, 𝐴𝐴𝐴)



Pushdown automata

The language of a PDA:

𝐿((𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 )) =
{ 𝑤 ∈ Σ∗ | 𝑞 ∈ 𝐹 , 𝛼 ∈ Γ∗, (𝑞0, 𝑤, 𝑍0) ⊢∗ (𝑞, 𝜀, 𝛾) }



Consider the PDA
𝑃 = ({𝑞}, {0, 1}, {𝐴, 𝐵}, 𝛿, 𝑞, 𝐵, {𝑞}) again, where
𝛿 is still defined in the following way:

𝛿(𝑞, 𝜀, 𝐴) = {(𝑞, 𝜀)} 𝛿(𝑞, 𝜀, 𝐵) = {(𝑞, 𝐵𝐴)}
𝛿(𝑞, 0, 𝐴) = ∅ 𝛿(𝑞, 0, 𝐵) = {(𝑞, 𝜀)}
𝛿(𝑞, 1, 𝐴) = ∅ 𝛿(𝑞, 1, 𝐵) = {(𝑞, 𝐴𝐵)}

Which of the following strings are members
of 𝐿(𝑃)?

1. 00
2. 01

3. 10
4. 11



Pushdown automata

Another way to define the language of a PDA:

𝑁((𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑍0, 𝐹 )) =
{ 𝑤 ∈ Σ∗ | 𝑞 ∈ 𝑄, (𝑞0, 𝑤, 𝑍0) ⊢∗ (𝑞, 𝜀, 𝜀) }

The following property holds for every
language 𝐿 over Σ:

(∃a PDA 𝑃 . 𝐿(𝑃 ) = 𝐿) ⇔ (∃a PDA 𝑃 . 𝑁(𝑃 ) = 𝐿)



Grammars and automata

For any alphabet Σ and language 𝐿 ⊆ Σ∗ one can
prove that the following two statements are
equivalent:
▶ There is a context-free grammar 𝐺, with Σ as

its set of terminals, satisfying 𝐿(𝐺) = 𝐿.
▶ There is a pushdown automaton 𝑃 with

alphabet Σ satisfying 𝐿(𝑃) = 𝐿.



Grammars and automata

Given a context-free grammar 𝐺 = (𝑁, Σ, 𝑃 , 𝑆),
we can construct the PDA
𝑄 = ({ 𝑞 } , Σ, 𝑁 ∪ Σ, 𝛿, 𝑞, 𝑆, ∅), where 𝛿 is defined
in the following way:

𝛿(𝑞, 𝜀, 𝐴) = { (𝑞, 𝛼) | 𝐴 → 𝛼 ∈ 𝑃 }
𝛿(𝑞, 𝑎, 𝑎) = { (𝑞, 𝜀) }
𝛿(𝑞, , ) = ∅



Which of the following propositions are valid
for the context-free grammar and PDA
mentioned on the previous slide?

1. 𝐴 → 𝛼 ∈ 𝑃 ⇒ (𝑞, 𝑤, 𝐴𝛽) ⊢ (𝑞, 𝑤, 𝛼𝛽)
2. (𝑞, 𝑢𝑣, 𝑢𝛼) ⊢∗ (𝑞, 𝑣, 𝛼)
3. (𝐴 ⇒∗

lm 𝑤𝛼) ∧
𝛼 does not start with a terminal ⇒
(𝑞, 𝑤, 𝐴) ⊢∗ (𝑞, 𝜀, 𝛼)

4. (𝐴 ⇒∗
lm 𝑤) ⇒ (𝑞, 𝑤, 𝐴) ⊢∗ (𝑞, 𝜀, 𝜀)

5. 𝑤 ∈ 𝐿(𝐺) ⇒ 𝑤 ∈ 𝑁(𝑄)



Turing
machines



Intuitive idea

▶ A tape that extends arbitrarily far
in both directions.

▶ The tape is divided into squares.
▶ The squares can be blank or contain symbols,

chosen from a finite alphabet.
▶ A read/write head, positioned over one square.
▶ The head can move from one square

to an adjacent one.
▶ Rules that explain what the head does.



Rules

▶ A finite set of states.
▶ When the head reads a symbol

(blank squares correspond to a special symbol):
▶ Check if the current state contains a

matching rule, with:
▶ A symbol to write.
▶ A direction to move in.
▶ A state to switch to.

▶ If not, halt.



The Church-Turing thesis

▶ Turing motivated his design partly by reference
to what a human computer does.

▶ The Church-Turing thesis:
Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

▶ “Effectively calculable function” is not a
well-defined concept, so this is not a theorem.



Syntax

A Turing machine (TM) can be given as a 7-tuple
(𝑄, Σ, Γ, 𝛿, 𝑞0, ␣, 𝐹 ):
▶ A finite set of states (𝑄).
▶ An input alphabet (Σ).
▶ A tape alphabet (Γ with Σ ⊆ Γ).
▶ A (partial) transition function

(𝛿 ∈ 𝑄 × Γ ⇀ 𝑄 × Γ × { L, R }).
▶ A start state (𝑞0 ∈ 𝑄).
▶ A blank symbol (␣ ∈ Γ ∖ Σ).
▶ A set of accepting states (𝐹 ⊆ 𝑄).



Instantaneous descriptions

An instantaneous description (ID) for a given TM is
a 4-tuple (𝛼, 𝑞, 𝑋, 𝛽), often written 𝛼𝑞𝑋𝛽:
▶ The current state (𝑞 ∈ 𝑄).
▶ The non-blank portion of the tape

(𝑋 ∈ Γ, 𝛼, 𝛽 ∈ Γ∗).

..⋯. ␣. ␣. 𝛼1. ⋯. 𝛼𝑚. 𝑋. 𝛽1. ⋯. 𝛽𝑛. ␣. ␣. ⋯.

Head

.

Not blank

.

Not blank



Transition relation

The following relation between IDs defines what
kinds of transitions are possible:

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , R)
(𝛼, 𝑝, 𝑋, 𝑍𝛽) ⊢ (𝑙(𝛼𝑌 ), 𝑞, 𝑍, 𝛽)

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , R)
(𝛼, 𝑝, 𝑋, 𝜀) ⊢ (𝑙(𝛼𝑌 ), 𝑞, ␣, 𝜀)

The function 𝑙 removes leading blanks.



Transition relation

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , L)
(𝛼𝑍, 𝑝, 𝑋, 𝛽) ⊢ (𝛼, 𝑞, 𝑍, 𝑟(𝑌 𝛽))

𝛿(𝑝, 𝑋) = (𝑞, 𝑌 , L)
(𝜀, 𝑝, 𝑋, 𝛽) ⊢ (𝜀, 𝑞, ␣, 𝑟(𝑌 𝛽))

The function 𝑟 removes trailing blanks.



Transition relation

The reflexive transitive closure of ⊢ can be defined
inductively:

𝐼 ⊢∗ 𝐼
𝐼 ⊢ 𝐽 𝐽 ⊢∗ 𝐾

𝐼 ⊢∗ 𝐾



Consider the TM
𝑀 = ({ 𝑝, 𝑞 } , { 0, 1 } , { 0, 1, ␣ } , 𝛿, 𝑝, ␣, ∅), where
𝛿 is defined in the following way:

𝛿(𝑝, ␣) = (𝑞, ␣, L)
𝛿(𝑝, 0) = (𝑝, 1, R) 𝛿(𝑞, 0) = (𝑞, 0, L)
𝛿(𝑝, 1) = (𝑝, 0, R) 𝛿(𝑞, 1) = (𝑞, 1, L)

Which of the following statements are true
for 𝑀?

1. 𝑝01 ⊢∗ 10𝑝␣
2. 𝑝01 ⊢∗ 𝑞␣10
3. 𝑝01 ⊢∗ 𝑞␣␣10

4. 𝑝111 ⊢∗ 00𝑝1
5. 𝑝111 ⊢∗ 00𝑞1
6. 𝑝111 ⊢∗ 0𝑞00



Language

The language of a TM:

𝐿((𝑄, Σ, Γ, 𝛿, 𝑞0, ␣, 𝐹 )) =
{ 𝑤 ∈ Σ∗ ∣ 𝑞 ∈ 𝐹 , 𝑋 ∈ Γ, 𝛼, 𝛽 ∈ Γ∗,

𝑞0𝑤 ⊢∗ 𝛼𝑞𝑋𝛽 }

(Here 𝑞0𝜀 means 𝑞0␣.)



Halting

▶ Turing machines can fail to halt (𝐼0 ⊢ 𝐼1 ⊢ …).
▶ A language is called recursively enumerable if it

is the language of some Turing machine.
▶ A language is called recursive if it is the

language of some Turing machine
that always halts.

▶ There are languages that are
recursively enumerable but not recursive.

▶ An example: The language of
(strings representing) Turing machines that
halt when given the empty string as input.



Consider the TM
𝑀 = ({ 𝑝, 𝑞, 𝑟 } , { 1 } , { 1, ␣ } , 𝛿, 𝑝, ␣, { 𝑟 }),
where 𝛿 is defined in the following way:

𝛿(𝑝, ␣) = (𝑟, ␣, R)
𝛿(𝑝, 1) = (𝑞, ␣, R)
𝛿(𝑞, 1) = (𝑝, ␣, R)

Which of the following strings are members
of 𝐿(𝑀)? Does 𝑀 always halt?

1. 𝜀
2. 1
3. 11

4. 111
5. 1111
6. It always halts



Some
undecidable

problems



Some undecidable problems
The following things cannot, in general,
be determined (using, say, a Turing machine
that always halts):
▶ If a Turing machine halts for a given input.
▶ If two Turing machines accept

the same language.
▶ If a context-free grammar is ambiguous.
▶ If a context-free language, given by a

context-free grammar, is inherently ambiguous.
▶ If 𝐿(𝐺1) = 𝐿(𝐺2) for two

context-free grammars 𝐺1 and 𝐺2.
▶ …



Some undecidable problems

If you want to know more about why certain
problems are undecidable, then you might be
interested in the course Computability
(formerly known as “Models of computation”).



Today

▶ Pushdown automata.
▶ Turing machines.



Next lecture

▶ A summary of the course.

▶ No more quizzes.
▶ Deadline for the sixth assignment:

2019-03-10, 23:59.
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