Finite automata theory and
 formal languages (DIT321, TMV027)

Nils Anders Danielsson
2019-03-07

Today

- Pushdown automata.
- Turing machines.

Pushdown automata

Pushdown automata

A pushdown automaton (PDA) can be given as a 7-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$:

- A finite set of states (Q).
- An alphabet (Σ with $\varepsilon \notin \Sigma$).
- A stack alphabet (Γ).
- A transition function

$$
\left(\delta \in Q \times\left(\{\varepsilon\} \cup \Sigma^{1}\right) \times \Gamma \rightarrow \wp\left(Q \times \Gamma^{*}\right)\right)
$$

- A start state $\left(q_{0} \in Q\right)$.
- A start symbol $\left(Z_{0} \in \Gamma\right)$.
- A set of accepting states $(F \subseteq Q)$.

Pushdown automata

An instantaneous description (ID) for a given PDA is a triple (q, w, γ) :

- The current state $(q \in Q)$.
- The remainder of the input string $\left(w \in \Sigma^{*}\right)$.
- The current stack $\left(\gamma \in \Gamma^{*}\right)$.

Pushdown automata

The following relation between IDs defines what kinds of transitions are possible:

$$
\frac{u \in\{\varepsilon\} \cup \Sigma^{1} \quad(q, \alpha) \in \delta(p, u, Z)}{(p, u v, Z \gamma) \vdash(q, v, \alpha \gamma)}
$$

The reflexive transitive closure of \vdash can be defined inductively:

Consider the PDA
$P=(\{q\},\{0,1\},\{A, B\}, \delta, q, B,\{q\})$, where δ is defined in the following way:

$$
\begin{array}{ll}
\delta(q, \varepsilon, A)=\{(q, \varepsilon)\} & \delta(q, \varepsilon, B)=\{(q, B A)\} \\
\delta(q, 0, A)=\emptyset & \delta(q, 0, B)=\{(q, \varepsilon)\} \\
\delta(q, 1, A)=\emptyset & \delta(q, 1, B)=\{(q, A B)\}
\end{array}
$$

Which of the following propositions are true for P ?

$$
\begin{aligned}
& \text { 1. }(q, 01, A B) \vdash^{*}(q, \varepsilon, \varepsilon) \\
& \text { 2. }(q, 01, A B) \vdash^{*}(q, \varepsilon, A A A) \\
& \text { 3. }(q, 01, A B) \vdash^{*}(q, 1, \varepsilon) \\
& \text { 4. }(q, 01, A B) \vdash^{*}(q, 1, A A A)
\end{aligned}
$$

Pushdown automata

The language of a PDA:

$$
\begin{aligned}
& L\left(\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)\right)= \\
& \left\{w \in \Sigma^{*} \mid q \in F, \alpha \in \Gamma^{*},\left(q_{0}, w, Z_{0}\right) \vdash^{*}(q, \varepsilon, \gamma)\right\}
\end{aligned}
$$

Consider the PDA
$P=(\{q\},\{0,1\},\{A, B\}, \delta, q, B,\{q\})$ again, where δ is still defined in the following way:

$$
\begin{array}{ll}
\delta(q, \varepsilon, A)=\{(q, \varepsilon)\} & \delta(q, \varepsilon, B)=\{(q, B A)\} \\
\delta(q, 0, A)=\emptyset & \delta(q, 0, B)=\{(q, \varepsilon)\} \\
\delta(q, 1, A)=\emptyset & \delta(q, 1, B)=\{(q, A B)\}
\end{array}
$$

Which of the following strings are members of $L(P)$?

1. 00
2. 01
3. 10
4. 11

Pushdown automata

Another way to define the language of a PDA:

$$
\begin{aligned}
& N\left(\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)\right)= \\
& \quad\left\{w \in \Sigma^{*} \mid q \in Q,\left(q_{0}, w, Z_{0}\right) \vdash^{*}(q, \varepsilon, \varepsilon)\right\}
\end{aligned}
$$

The following property holds for every language L over Σ :

$$
(\exists \mathrm{a} \text { PDA } P \cdot L(P)=L) \Leftrightarrow(\exists \mathrm{a} \text { PDA } P \cdot N(P)=L)
$$

Grammars and automata

For any alphabet Σ and language $L \subseteq \Sigma^{*}$ one can prove that the following two statements are equivalent:

- There is a context-free grammar G, with Σ as its set of terminals, satisfying $L(G)=L$.
- There is a pushdown automaton P with alphabet Σ satisfying $L(P)=L$.

Grammars and automata

Given a context-free grammar $G=(N, \Sigma, P, S)$, we can construct the PDA
$Q=(\{q\}, \Sigma, N \cup \Sigma, \delta, q, S, \emptyset)$, where δ is defined in the following way:

$$
\begin{aligned}
& \delta(q, \varepsilon, A)=\{(q, \alpha) \mid A \rightarrow \alpha \in P\} \\
& \delta(q, a, a)=\{(q, \varepsilon)\} \\
& \delta\left(q,_{-},-\right)=\emptyset
\end{aligned}
$$

Which of the following propositions are valid for the context-free grammar and PDA mentioned on the previous slide?

1. $A \rightarrow \alpha \in P \Rightarrow(q, w, A \beta) \vdash(q, w, \alpha \beta)$
2. $(q, u v, u \alpha) \vdash^{*}(q, v, \alpha)$
3. $\left(A \Rightarrow{ }_{\mathrm{Im}}^{*} w \alpha\right) \wedge$
α does not start with a terminal \Rightarrow
$(q, w, A) \vdash^{*}(q, \varepsilon, \alpha)$
4. $\left(A \Rightarrow_{\mathrm{Im}}^{*} w\right) \Rightarrow(q, w, A) \vdash^{*}(q, \varepsilon, \varepsilon)$
5. $w \in L(G) \Rightarrow w \in N(Q)$

Turing machines

Intuitive idea

- A tape that extends arbitrarily far in both directions.
- The tape is divided into squares.
- The squares can be blank or contain symbols, chosen from a finite alphabet.
- A read/write head, positioned over one square.
- The head can move from one square to an adjacent one.
- Rules that explain what the head does.

Rules

- A finite set of states.
- When the head reads a symbol
(blank squares correspond to a special symbol):
- Check if the current state contains a matching rule, with:
- A symbol to write.
- A direction to move in.
- A state to switch to.
- If not, halt.

The Church-Turing thesis

- Turing motivated his design partly by reference to what a human computer does.
- The Church-Turing thesis:

Every effectively calculable function on the positive integers can be computed using a Turing machine.

- "Effectively calculable function" is not a well-defined concept, so this is not a theorem.

Syntax

A Turing machine (TM) can be given as a 7-tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, \sqcup, F\right)$:

- A finite set of states (Q).
- An input alphabet (Σ).
- A tape alphabet (Γ with $\Sigma \subseteq \Gamma$).
- A (partial) transition function

$$
(\delta \in Q \times \Gamma \rightharpoonup Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})
$$

- A start state $\left(q_{0} \in Q\right)$.
- A blank symbol $(\sqcup \in \Gamma \backslash \Sigma)$.
- A set of accepting states $(F \subseteq Q)$.

Instantaneous descriptions

An instantaneous description (ID) for a given TM is a 4-tuple (α, q, X, β), often written $\alpha q X \beta$:

- The current state $(q \in Q)$.
- The non-blank portion of the tape $\left(X \in \Gamma, \alpha, \beta \in \Gamma^{*}\right)$.

Not blank Head Not blank

Transition relation

The following relation between IDs defines what kinds of transitions are possible:

$$
\begin{gathered}
\frac{\delta(p, X)=(q, Y, \mathrm{R})}{(\alpha, p, X, Z \beta) \vdash(l(\alpha Y), q, Z, \beta)} \\
\frac{\delta(p, X)=(q, Y, \mathrm{R})}{(\alpha, p, X, \varepsilon) \vdash(l(\alpha Y), q, \sqcup, \varepsilon)}
\end{gathered}
$$

The function l removes leading blanks.

Transition relation

$$
\begin{gathered}
\frac{\delta(p, X)=(q, Y, \mathrm{~L})}{(\alpha Z, p, X, \beta) \vdash(\alpha, q, Z, r(Y \beta))} \\
\frac{\delta(p, X)=(q, Y, \mathrm{~L})}{(\varepsilon, p, X, \beta) \vdash(\varepsilon, q, \sqcup, r(Y \beta))}
\end{gathered}
$$

The function r removes trailing blanks.

Transition relation

The reflexive transitive closure of \vdash can be defined inductively:

Consider the TM
$M=(\{p, q\},\{0,1\},\{0,1, \sqcup\}, \delta, p, \sqcup, \emptyset)$, where δ is defined in the following way:

$$
\begin{array}{ll}
\delta(p, \sqcup)=(q, \sqcup, \mathrm{~L}) & \\
\delta(p, 0)=(p, 1, \mathrm{R}) & \delta(q, 0)=(q, 0, \mathrm{~L}) \\
\delta(p, 1)=(p, 0, \mathrm{R}) & \delta(q, 1)=(q, 1, \mathrm{~L})
\end{array}
$$

Which of the following statements are true for M ?

1. $p 01 \vdash^{*} 10 p$
2. $p 01 \vdash^{*} q \sqcup 10$
3. $p 01 \vdash^{*} q_{\sqcup \sqcup} 10$
4. $p 111 \vdash^{*} 00 p 1$
5. $p 111 \vdash^{*} 00 q 1$
6. $p 111 \vdash^{*} 0 q 00$

Language

The language of a TM:

$$
\begin{aligned}
& L\left(\left(Q, \Sigma, \Gamma, \delta, q_{0}, \sqcup, F\right)\right)= \\
& \left\{\begin{array}{l|l}
w \in \Sigma^{*} & \begin{array}{l}
q \in F, X \in \Gamma, \alpha, \beta \in \Gamma^{*} \\
q_{0} w \vdash^{*} \alpha q X \beta
\end{array}
\end{array}\right\}
\end{aligned}
$$

(Here $q_{0} \varepsilon$ means $q_{0} \sqcup$.)

Halting

- Turing machines can fail to halt $\left(I_{0} \vdash I_{1} \vdash \ldots\right)$.
- A language is called recursively enumerable if it is the language of some Turing machine.
- A language is called recursive if it is the language of some Turing machine that always halts.
- There are languages that are recursively enumerable but not recursive.
- An example: The language of (strings representing) Turing machines that halt when given the empty string as input.

Consider the TM
$M=(\{p, q, r\},\{1\},\{1, \sqcup\}, \delta, p, \sqcup,\{r\})$, where δ is defined in the following way:

$$
\begin{aligned}
& \delta(p, \sqcup)=(r, \sqcup, \mathrm{R}) \\
& \delta(p, 1)=(q, \sqcup, \mathrm{R}) \\
& \delta(q, 1)=(p, \sqcup, \mathrm{R})
\end{aligned}
$$

Which of the following strings are members of $L(M)$? Does M always halt?

1. ε
2. 1
3. 11
4. 111
5. 1111
6. It always halts

Some

undecidable

problems

Some undecidable problems

The following things cannot, in general, be determined (using, say, a Turing machine that always halts):

- If a Turing machine halts for a given input.
- If two Turing machines accept the same language.
- If a context-free grammar is ambiguous.
- If a context-free language, given by a context-free grammar, is inherently ambiguous.
- If $L\left(G_{1}\right)=L\left(G_{2}\right)$ for two context-free grammars G_{1} and G_{2}.

Some undecidable problems

If you want to know more about why certain problems are undecidable, then you might be interested in the course Computability (formerly known as "Models of computation").

Today

- Pushdown automata.
- Turing machines.

Next lecture

- A summary of the course.
- No more quizzes.
- Deadline for the sixth assignment: 2019-03-10, 23:59.

