Lecture 5

Simply typed lambda calculus

The syntax is now

 $e \ ::= \ x \mid e \ e \mid \lambda(x:T) \ e \mid \mathsf{zero} \mid \mathsf{succ} \ e$

where

$$T, A ::=$$
Nat | $T \to T$

The typing rule are of the form $\Gamma \vdash t : T$ where Γ is a *context* i.e. a list of typing declaration x : T.

$$\begin{array}{ccc} \overline{\Gamma, x: T \vdash x: T} & \frac{\Gamma \vdash x: T}{\Gamma, y: A \vdash x: T} x \neq y & \overline{\Gamma \vdash \mathsf{zero}: \mathsf{Nat}} & \frac{\Gamma \vdash e: \mathsf{Nat}}{\Gamma \vdash \mathsf{succ} \; e: \mathsf{Nat}} \\ & \frac{\Gamma \vdash t_0: A \to B \quad \Gamma \vdash t_1: A}{\Gamma \vdash t_0 \; t_1: B} & \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda(x: A) \; t: A \to B} \end{array}$$

A term of the form $\lambda(x:A) x x$ will not be well-typed.

Lemma 0.1 If $\vdash t : A$ and $\Gamma, x : A \vdash e : B$ then $\Gamma \vdash e(t/x) : B$

From this Lemma we can prove

Theorem 0.2 (preservation) If t : A and $t \to t'$ then t' : A.

Theorem 0.3 (progress) If $\vdash t : A$ then t is a value or $\exists t' \ t \to t'$

Closures and evaluation

We define:

$$\begin{aligned} 0(\rho,c) &= c \qquad (n+1)(\rho,c) = n\rho \qquad (e_0 \ e_1)\rho = e_0\rho \ (e_1\rho) \qquad (\lambda e)\rho = (\lambda e,\rho) \\ \\ \mathsf{zero}\rho &= \mathsf{zero} \qquad (\mathsf{succ} \ e)\rho = \mathsf{succ} \ (e\rho) \end{aligned}$$

Evaluation

$$\frac{c_0 \to c_0}{(\lambda \ A \ t)\rho \ c \to t(\rho, c)} \qquad \frac{c_0 \to c_0}{c_0 \ c_1 \to c_0' \ c_1}$$
$$\frac{c \to c'}{\operatorname{succ} \ c \to \operatorname{succ} \ c'}$$

Logical relations/predicates

A logical predicate is a predicate $P_A(c)$ on terms of type A such that

$$\frac{P_{\mathsf{Nat}}(c') \quad c \to c'}{P_{\mathsf{Nat}}(c)} \qquad \frac{P_{\mathsf{Nat}}(c)}{P_{\mathsf{Nat}}(\mathsf{zero})} \qquad \frac{P_{\mathsf{Nat}}(c)}{P_{\mathsf{Nat}}(\mathsf{succ}\ c)}$$

and $P_{A \to B}(c_0) \Leftrightarrow \forall c_1 \ (P_A(c_1) \to P_B(c_0 \ c_1)).$

Theorem 0.4 We have for all type A

$$\frac{P_A(c') \quad c \to c'}{P_A(c)}$$

We define $P_{\Gamma}(\rho)$ by $P_{()}()$ and $P_{\Gamma,A}(\rho,c)$ is $P_{\Gamma}(\rho)$ and $P_{A}(c)$.

Theorem 0.5 If $\Gamma \vdash t : A$ and $P_{\Gamma}(\rho)$ then $P_A(t\rho)$. In particular if $\vdash t : A$ then $P_A(t())$.

$$\begin{array}{ccc} \hline c: \mathsf{Nat} & \hline c: \mathsf{Nat} \\ \hline \mathbf{zero}: \mathsf{Nat} & \overline{\mathsf{succ}} \ c: \mathsf{Nat} \\ \hline \hline \mathbf{c}_0: A \to B & c_1: A \\ \hline c_0 \ c_1: B & \hline \Gamma \vdash t: A & \rho: \Gamma \\ \hline t\rho: A \\ \hline \hline \hline (): () & \hline \rho: \Gamma & c: A \\ \hline \hline (\rho, c): \Gamma. A \end{array}$$

Theorem 1: If c : A then c is a value or $\exists c' \ (c \to c')$

Theorem 2: If c : A and $c \to c'$ then c' : A

Normalization Theorem

We define $R_A(c)$ by induction on A

 $R_{\mathsf{Nat}}(c) \text{ is } \exists v \ (c \to^* v) \\ R_{A \to B}(c) \text{ is } \forall c' : A \ (R_A(c') \to R_B(c \ c')) \\ \text{Lemma 1: } If \ c \to c' \ and \ c : A \ and \ R_A(c') \ then \ R_A(c) \\ \text{So } R_A \text{ is a logical predicate. It follows that we have.} \\ \text{Theorem: } If \ c : \mathsf{Nat} \ then \ \exists v \ (c \to^* v). \end{cases}$

A small term with a large value

We can define $\exp A = A \rightarrow A$ and the term twice $A : \exp(\exp A) = \lambda(\exp A)\lambda A \ 1 \ (1 \ 0)$ It is possible then to define twice_n = twice (\exp^n Nat) and the term

$$t = (((\dots ((\mathsf{twice}_n \mathsf{twice}_{n-1}) \mathsf{twice}_{n-2}) \dots) \mathsf{twice}_0) \mathsf{succ}) \mathsf{zero}$$

is then of type t: Nat. By the Theorem, there exists v such that $t \to^* v$. However v is of the form succ^k zero where k is a tower of n exponentials $k = 2^{2^{2^{\cdots}}}$.

Denotational semantics

For $\Gamma \vdash t : A$ and ρ in $\llbracket \Gamma \rrbracket$ we define $\llbracket t \rrbracket \rho$ in $\llbracket A \rrbracket$ where

- [[Nat]] is the set of natural numbers
- $\llbracket A \to B \rrbracket$ is the set of functions from the set $\llbracket A \rrbracket$ to the set $\llbracket B \rrbracket$
- $\llbracket()\rrbracket$ is the singleton $\{0\}$ and $\llbracket\Gamma.A\rrbracket$ is the product $\llbracket\Gamma\rrbracket \times \llbracketA\rrbracket$

The definition is by induction on t

$$[\![0]\!](\rho, u) = u \qquad [\![n+1]\!](\rho, u) = [\![n]\!]\rho$$
$$[\![\operatorname{zero}]\!]\rho = 0 \qquad [\![\operatorname{succ} e]\!]\rho = 1 + [\![e]\!]\rho$$
$$[\![t_0 \ t_1]\!](\rho) = [\![t_0]\!]\rho([\![t_1]\!]\rho) \qquad [\![\lambda \ A \ t]\!]\rho(u) = [\![t]\!](\rho, u)$$

If n is a natural number, we define q(n) of type Nat by q(0) = zero and q(n+1) = succ q(n). We prove the following result by the technique of logical relation

Theorem 0.6 If $\vdash t$: Nat then $t() \rightarrow^* q(\llbracket t \rrbracket)$

Abstract data type and representation independence

We consider two different implemenations of the context

$$test: X \to \mathsf{Bool}, \ rev: X \to X, \ init: X$$

One is X = Bool, $test = \lambda(x : \text{Bool})x$, $rev = \neg$, init = true and the other is $X = \mathbb{Z}$, $test = \lambda(n : \text{Nat})n > 0$, init = 1 and $rev \ x = -x$.

Given two such implementations A_0, f_0, g_0 and A_1, f_1, g_1 we say that they are *related* by a relation R if we have $R(u_0, u_1) \Rightarrow f_0(u_0) = f_1(u_1)$ and $R(u_0, u_1) \Rightarrow R(g_0(u_0), g_1(u_1))$.

Theorem 0.7 If $\vdash t(X, test, rev)$: Bool and the two implementations are related then $\llbracket t \rrbracket(A_0, f_0, g_0) = \llbracket t \rrbracket(A_1, f_1, g_1)$.

An example of such a term is *test* (*rev* (*rev init*)).