
Lecture 5

Simply typed lambda calculus

The syntax is now
e ::= x | e e | λ(x : T) e | zero | succ e

where
T,A ::= Nat | T → T

The typing rule are of the form Γ ` t : T where Γ is a context i.e. a list of typing declaration
x : T .

Γ, x : T ` x : T

Γ ` x : T

Γ, y : A ` x : T
x 6= y

Γ ` zero : Nat

Γ ` e : Nat

Γ ` succ e : Nat

Γ ` t0 : A→ B Γ ` t1 : A

Γ ` t0 t1 : B

Γ, x : A ` t : B

Γ ` λ(x : A) t : A→ B

A term of the form λ(x : A) x x will not be well-typed.

Lemma 0.1 If ` t : A and Γ, x : A ` e : B then Γ ` e(t/x) : B

From this Lemma we can prove

Theorem 0.2 (preservation) If t : A and t→ t′ then t′ : A.

Theorem 0.3 (progress) If ` t : A then t is a value or ∃t′ t→ t′

Closures and evaluation

We define:
Closures c ::= (λ A t, ρ) | c c | zero | succ c
Environment ρ ::= () | ρ, c
Values v ::= nv | (λ A t, ρ) nv ::= zero | succ nv
Susbstitution

0(ρ, c) = c (n+ 1)(ρ, c) = nρ (e0 e1)ρ = e0ρ (e1ρ) (λe)ρ = (λe, ρ)

zeroρ = zero (succ e)ρ = succ (eρ)

Evaluation

(λ A t)ρ c→ t(ρ, c)

c0 → c′0
c0 c1 → c′0 c1

c→ c′

succ c→ succ c′

1

Logical relations/predicates

A logical predicate is a predicate PA(c) on terms of type A such that

PNat(c
′) c→ c′

PNat(c) PNat(zero)

PNat(c)

PNat(succ c)

and PA→B(c0)⇔ ∀c1 (PA(c1)→ PB(c0 c1)).

Theorem 0.4 We have for all type A

PA(c′) c→ c′

PA(c)

We define PΓ(ρ) by P()() and PΓ.A(ρ, c) is PΓ(ρ) and PA(c).

Theorem 0.5 If Γ ` t : A and PΓ(ρ) then PA(tρ). In particular if ` t : A then PA(t()).

zero : Nat

c : Nat

succ c : Nat

c0 : A→ B c1 : A

c0 c1 : B

Γ ` t : A ρ : Γ

tρ : A

() : ()

ρ : Γ c : A

(ρ, c) : Γ.A

Theorem 1: If c : A then c is a value or ∃c′ (c→ c′)

Theorem 2: If c : A and c→ c′ then c′ : A

Normalization Theorem

We define RA(c) by induction on A

RNat(c) is ∃v (c→∗ v)
RA→B(c) is ∀c′ : A (RA(c′)→ RB(c c′))

Lemma 1: If c→ c′ and c : A and RA(c′) then RA(c)

So RA is a logical predicate. It follows that we have.

Theorem: If c : Nat then ∃v (c→∗ v).

A small term with a large value

We can define exp A = A→ A and the term twice A : exp (exp A) = λ(exp A)λA 1 (1 0)
It is possible then to define twicen = twice (expn Nat) and the term

t = (((. . . ((twicen twicen−1) twicen−2) . . .) twice0) succ) zero

is then of type t : Nat. By the Theorem, there exists v such that t →∗ v. However v is of the
form succk zero where k is a tower of n exponentials k = 222

...

.

2

Denotational semantics

For Γ ` t : A and ρ in [[Γ]] we define [[t]]ρ in [[A]] where

• [[Nat]] is the set of natural numbers

• [[A→ B]] is the set of functions from the set [[A]] to the set [[B]]

• [[()]] is the singleton {0} and [[Γ.A]] is the product [[Γ]]× [[A]]

The definition is by induction on t

[[0]](ρ, u) = u [[n+ 1]](ρ, u) = [[n]]ρ

[[zero]]ρ = 0 [[succ e]]ρ = 1 + [[e]]ρ

[[t0 t1]](ρ) = [[t0]]ρ([[t1]]ρ) [[λ A t]]ρ(u) = [[t]](ρ, u)

If n is a natural number, we define q(n) of type Nat by q(0) = zero and q(n + 1) = succ q(n).
We prove the following result by the technique of logical relation

Theorem 0.6 If ` t : Nat then t()→∗ q([[t]])

Abstract data type and representation independence

We consider two different implemenations of the context

test : X → Bool, rev : X → X, init : X

One is X = Bool, test = λ(x : Bool)x, rev = ¬, init = true and the other is X = Z, test =
λ(n : Nat)n > 0, init = 1 and rev x = −x.

Given two such implementations A0, f0, g0 and A1, f1, g1 we say that they are related by a
relation R if we have R(u0, u1)⇒ f0(u0) = f1(u1) and R(u0, u1)⇒ R(g0(u0), g1(u1)).

Theorem 0.7 If ` t(X, test, rev) : Bool and the two implementations are related then [[t]](A0, f0, g0) =
[[t]](A1, f1, g1).

An example of such a term is test (rev (rev init)).

3

