Lecture 5

Simply typed lambda calculus

The syntax is now

$$
e::=x|e e| \lambda(x: T) e \mid \text { zero } \mid \operatorname{succ} e
$$

where

$$
T, A::=\text { Nat } \mid T \rightarrow T
$$

The typing rule are of the form $\Gamma \vdash t: T$ where Γ is a context i.e. a list of typing declaration $x: T$.

$$
\begin{array}{ccc}
\frac{\Gamma \vdash x: T}{\Gamma, x: T \vdash x: T} & \frac{\Gamma \neq y}{\Gamma, y: A \vdash x: T} x \neq y & \\
\frac{\Gamma \vdash t_{0}: A \rightarrow B \quad \Gamma \vdash t_{1}: A}{\Gamma \vdash t_{0} t_{1}: B} & & \frac{\Gamma \vdash e: \text { nato }}{\Gamma \vdash \text { Nat }} \\
& & \frac{\Gamma \vdash \lambda \vdash t: B}{\Gamma \vdash \lambda(x: A) t: A \rightarrow B}
\end{array}
$$

A term of the form $\lambda(x: A) x x$ will not be well-typed.
Lemma 0.1 If $\vdash t: A$ and $\Gamma, x: A \vdash e: B$ then $\Gamma \vdash e(t / x): B$
From this Lemma we can prove

Theorem 0.2 (preservation) If $t: A$ and $t \rightarrow t^{\prime}$ then $t^{\prime}: A$.
Theorem 0.3 (progress) If $\vdash t: A$ then t is a value or $\exists t^{\prime} t \rightarrow t^{\prime}$

Closures and evaluation

We define:
Closures $c::=(\lambda A t, \rho)|c c|$ zero \mid succ c
Environment $\rho::=() \mid \rho, c$
Values $v::=n v \mid(\lambda A t, \rho) \quad n v::=$ zero \mid succ $n v$
Susbstitution

$$
\begin{gathered}
0(\rho, c)=c \quad(n+1)(\rho, c)=n \rho \quad\left(e_{0} e_{1}\right) \rho=e_{0} \rho\left(e_{1} \rho\right) \quad(\lambda e) \rho=(\lambda e, \rho) \\
\text { zero } \rho=\text { zero } \quad(\operatorname{succ} e) \rho=\operatorname{succ}(e \rho)
\end{gathered}
$$

Evaluation

$$
\begin{gathered}
\overline{(\lambda A t) \rho c} \rightarrow t(\rho, c)
\end{gathered} \frac{c_{0} \rightarrow c_{0}^{\prime}}{c_{0} c_{1} \rightarrow c_{0}^{\prime} c_{1}}
$$

Logical relations/predicates

A logical predicate is a predicate $P_{A}(c)$ on terms of type A such that

$$
\frac{P_{\mathrm{Nat}}\left(c^{\prime}\right) c \rightarrow c^{\prime}}{P_{\mathrm{Nat}}(c)} \quad \frac{P_{\mathrm{Nat}}(c)}{P_{\mathrm{Nat}}(\text { zero })} \quad \frac{P_{\mathrm{Nat}}(\operatorname{succ} c)}{}
$$

and $P_{A \rightarrow B}\left(c_{0}\right) \Leftrightarrow \forall c_{1}\left(P_{A}\left(c_{1}\right) \rightarrow P_{B}\left(c_{0} c_{1}\right)\right)$.
Theorem 0.4 We have for all type A

$$
\frac{P_{A}\left(c^{\prime}\right) \quad c \rightarrow c^{\prime}}{P_{A}(c)}
$$

We define $P_{\Gamma}(\rho)$ by $P_{()}()$and $P_{\Gamma \cdot A}(\rho, c)$ is $P_{\Gamma}(\rho)$ and $P_{A}(c)$.
Theorem 0.5 If $\Gamma \vdash t: A$ and $P_{\Gamma}(\rho)$ then $P_{A}(t \rho)$. In particular if $\vdash t: A$ then $P_{A}(t())$.

$$
\begin{aligned}
& \overline{\text { zero : Nat }} \quad \frac{c: \text { Nat }}{\text { succ } c: \text { Nat }} \\
& \frac{c_{0}: A \rightarrow B \quad c_{1}: A}{c_{0} c_{1}: B} \quad \frac{\Gamma \vdash t: A}{t \rho: A} \\
& \overline{():()} \quad \frac{\rho: \Gamma \quad c: A}{(\rho, c): \Gamma \cdot A}
\end{aligned}
$$

Theorem 1: If $c: A$ then c is a value or $\exists c^{\prime}\left(c \rightarrow c^{\prime}\right)$
Theorem 2: If $c: A$ and $c \rightarrow c^{\prime}$ then $c^{\prime}: A$

Normalization Theorem

We define $R_{A}(c)$ by induction on A

$$
\begin{aligned}
& R_{\text {Nat }}(c) \text { is } \exists v\left(c \rightarrow^{*} v\right) \\
& R_{A \rightarrow B}(c) \text { is } \forall c^{\prime}: A\left(R_{A}\left(c^{\prime}\right) \rightarrow R_{B}\left(c c^{\prime}\right)\right)
\end{aligned}
$$

Lemma 1: If $c \rightarrow c^{\prime}$ and $c: A$ and $R_{A}\left(c^{\prime}\right)$ then $R_{A}(c)$
So R_{A} is a logical predicate. It follows that we have.
Theorem: If $c:$ Nat then $\exists v\left(c \rightarrow^{*} v\right)$.

A small term with a large value

We can define $\exp A=A \rightarrow A$ and the term twice $A: \exp (\exp A)=\lambda(\exp A) \lambda A 1(10)$
It is possible then to define twice ${ }_{n}=$ twice $\left(\exp ^{n}\right.$ Nat $)$ and the term

$$
t=\left(\left(\left(\ldots\left(\left(\text { twice }_{n} \text { twice }_{n-1}\right) \text { twice }_{n-2}\right) \ldots\right) \text { twice }_{0}\right) \text { succ }\right) \text { zero }
$$

is then of type t : Nat. By the Theorem, there exists v such that $t \rightarrow^{*} v$. However v is of the form succ^{k} zero where k is a tower of n exponentials $k=2^{2^{2^{\cdots}}}$.

Denotational semantics

For $\Gamma \vdash t: A$ and ρ in $\llbracket \Gamma \rrbracket$ we define $\llbracket t \rrbracket \rho$ in $\llbracket A \rrbracket$ where

- 【Nat】 is the set of natural numbers
- $\llbracket A \rightarrow B \rrbracket$ is the set of functions from the set $\llbracket A \rrbracket$ to the set $\llbracket B \rrbracket$
- $\llbracket() \rrbracket$ is the singleton $\{0\}$ and $\llbracket \Gamma \cdot A \rrbracket$ is the product $\llbracket \Gamma \rrbracket \times \llbracket A \rrbracket$

The definition is by induction on t

$$
\begin{gathered}
\llbracket 0 \rrbracket(\rho, u)=u \quad \llbracket n+1 \rrbracket(\rho, u)=\llbracket n \rrbracket \rho \\
\llbracket \text { zero } \rrbracket \rho=0 \quad \llbracket \text { succ } e \rrbracket \rho=1+\llbracket e \rrbracket \rho \\
\llbracket t_{0} t \rrbracket \rrbracket(\rho)=\llbracket t_{0} \rrbracket \rho\left(\llbracket t_{1} \rrbracket \rho\right) \quad \llbracket \lambda A t \rrbracket \rho(u)=\llbracket t \rrbracket(\rho, u)
\end{gathered}
$$

If n is a natural number, we define $q(n)$ of type Nat by $q(0)=$ zero and $q(n+1)=$ succ $q(n)$. We prove the following result by the technique of logical relation

Theorem 0.6 If $\vdash t:$ Nat then $t() \rightarrow^{*} q(\llbracket t \rrbracket)$

Abstract data type and representation independence

We consider two different implemenations of the context

$$
\text { test : } X \rightarrow \text { Bool, rev : } X \rightarrow X \text {, init : } X
$$

One is $X=$ Bool, test $=\lambda(x:$ Bool $) x$, rev $=\neg$, init $=$ true and the other is $X=\mathbb{Z}$, test $=$ $\lambda(n:$ Nat $) n>0$, init $=1$ and rev $x=-x$.

Given two such implementations A_{0}, f_{0}, g_{0} and A_{1}, f_{1}, g_{1} we say that they are related by a relation R if we have $R\left(u_{0}, u_{1}\right) \Rightarrow f_{0}\left(u_{0}\right)=f_{1}\left(u_{1}\right)$ and $R\left(u_{0}, u_{1}\right) \Rightarrow R\left(g_{0}\left(u_{0}\right), g_{1}\left(u_{1}\right)\right)$.

Theorem 0.7 If $\vdash t(X$, test, rev $)$: Bool and the two implementations are related then $\llbracket t \rrbracket\left(A_{0}, f_{0}, g_{0}\right)=$ $\llbracket t \rrbracket\left(A_{1}, f_{1}, g_{1}\right)$.

An example of such a term is test (rev (rev init)).

