Lecture 5

Simply typed lambda calculus

The syntax is now
e = x|ee|Nx:T)e|zero|succe

where
T,A == Nat | T —T

The typing rule are of the form I' - ¢ : T where I' is a context i.e. a list of typing declaration
z:T.

I'txz:T o+ I'e: Nat
Fe:TrHx:T Ny:Abxz:T Y T't zero : Nat I' - succ e : Nat
'tty:A— B 't :A z:A+t: B
Fl—totllB F")\(Q?A)lfA%B

A term of the form A(z : A) x = will not be well-typed.

Lemma 0.1 If-t: AandT',x: AF-e: B thenT'Fe(t/x): B

From this Lemma we can prove
Theorem 0.2 (preservation) Ift : A and t — t' then t' : A.

Theorem 0.3 (progress) If -t : A then t is a value or 3t' t — t/

Closures and evaluation

We define:

Closures ¢ = (A At,p) | cc|zero| succc

Environment p == () | p,c

Values v = nv | (A A t,p) nv = zero | succ nv

Susbstitution

0(p,c) =c  (n+1)(p,c)=np  (eo er)p=eop (e1p) (Ae)p = (Xe,p)

zerop = zero  (succ e)p = succ (ep)

Evaluation

co — ¢

(NAt)pc—t(p,c) co €1 = ¢ €1

c—c

succ ¢ — succ ¢



Logical relations/predicates

A logical predicate is a predicate P4(c) on terms of type A such that

Pnat(d)  c— Pnat(c)
Pyat(c) Pyat(zero) Pyat(succ ¢)

and PA_>B(C()) = Vcl (PA<61) — PB<CO 01)).

Theorem 0.4 We have for all type A

Pa(d) =/
PA(C)

We define Pr(p) by Py() and Pr.a(p,c) is Pr(p) and Pa(c).

Theorem 0.5 IfT'+t: A and Pr(p) then P4(tp). In particular if -t : A then Py(t()).

c: Nat
zero : Nat succ ¢ : Nat
co:A—B c¢1:A 't A p:T
coc1:B tp: A
p:T c: A
0:0 (r,0) T4

Theorem 1: If c: A then ¢ is a value or 3¢ (¢ — )

Theorem 2: Ifc: A and ¢ — ¢ then  : A

Normalization Theorem

We define R4(c) by induction on A

Rnat(c) is Fv (¢ =* v)
Ry p(c)isVd : A (Ra(d) = Rp(c d))

Lemma 1: If ¢ — ¢ and ¢c: A and Ra(c) then R(c)
So R4 is a logical predicate. It follows that we have.

Theorem: If ¢ : Nat then Jv (¢ —* v).

A small term with a large value

We can define exp A = A — A and the term twice A : exp (exp A) = A(exp A)AA 1 (10)
It is possible then to define twice,, = twice (exp™ Nat) and the term

t = (((...((twice, twice,_1) twice,_2)...) twiceg) succ) zero

is then of type t : Nat. By the Theorem, there exists v such that ¢ —* v. However v is of the

. . 2"
form succ® zero where k is a tower of n exponentials k = 22 .



Denotational semantics
For 't : A and p in [I'] we define [t]p in [A] where
e [Nat] is the set of natural numbers
e [A — B] is the set of functions from the set [A] to the set [B]
e [()] is the singleton {0} and [I".A] is the product [I'] x [A]
The definition is by induction on ¢
[O1(p,u) =w [0+ 1](p,u) = [nlp

[zero]p =0 [succ e]p =1+ [e]p

[to t2](p) = [tolp([t1lp) [N A tlp(u) = [t (p, u)

If n is a natural number, we define ¢(n) of type Nat by ¢(0) = zero and ¢(n + 1) = succ g(n).
We prove the following result by the technique of logical relation

Theorem 0.6 If+ ¢ : Nat then t() —* q([t])

Abstract data type and representation independence
We consider two different implemenations of the context
test : X — Bool, rev: X — X, init: X

One is X = Bool, test = A(z : Bool)z, rev = —, init = true and the other is X = Z, test =
A(n : Nat)n > 0, init =1 and rev z = —x.

Given two such implementations Ag, fo, go and A1, fi, g1 we say that they are related by a
relation R if we have R(ug,u1) = fo(uo) = fi(u1) and R(ug,u1) = R(go(uo), g1(u1)).

Theorem 0.7 Ift t(X, test,rev) : Bool and the two implementations are related then [t]( Ao, fo, 90) =
[t](Ax, f1,91).

An example of such a term is test (rev (rev init)).



