Lecture 4

Untyped A-calculus, call-by-name

This is in Chapter 5 of Pierce’s book and in the Agda book of Kokke and Wadler.

We recall the syntax
e n=x|lee| e

We define the set of free variables of e as follows.
FV(z) = {x} FV(eg e1) = FV(ep) UFV(er) FV(Aze)=FV(e)—{z}

An expression e is closed if we have F'V (e) = 0.
We define subsitution e(t/x) for ¢ closed. It is by case on e

e if e = x then e(t/x) =1t
o ife=y#xthene(t/z) =y
o if e = ey e; then e(t/z) = eo(t/x) e1(t/x)
o if e= )z ¢ then e(t/z) =¢
e if e = \y ¢ with y # z then e(t/x) = \y €'(t/x)
We then define a value to be a closed expression of the form Ax e.
v o= Az e
We define the call-by-name evaluation relation e — €’ for e and €’ closed expressions

e—é
eel — e e (Ax e) t —e(t/x)

Note that if § = Az z x then § is a value and 6 6 — & §, so we have =3¢’ NF(4 d,¢’)

This is closer to the evaluation in Haskell but there is a difference. In call-by-name, we may
evaluate several time the same expression, as in

e=Ayrxy (yx)tl

where t —* I and I = Ax x. The expression e will reduce to I but ¢ will be evaluated twice.
The evaluation in Haskell is call-by-need which is more complex to describe.

The description does not work for non closed terms. For instance if T'= Az Ay x we expect
T eg e1 —* ep. But if we take T'y e; we have T' y — (A\y z)(y/x) = Ay y and then T y e; —
(A\y y) e1 — e1. What happens here is a capture of variables. This problem appears in the first
implementation of LISP (by Steve Russell who is also known as the first implementor of video
game, Spacewar!).



de Bruijn representation
We define the terms (in de Bruijn notation) as
t = mn| M|ttt

namely deBruijn index, or abstraction, or application.

The expressions Az x and Ay y should be considered to be the same (the names of bound
variables should not matter.) There is an elegant alternative representation of A-terms where
bound variables are represented by the “distance” to their introducing abstractions. This was
used previously in compiling the language Algol.

E.g. AxAy y (y x) is written AXO (0 1) while AyAzx y (y x) is written AA1 (1 0). The
algorithm is the following: the function dB takes a list of names and an expression and builds
an expression with de Bruijn index.

e dB (z:2zs) =0

e dB (y:xs)x=14+dBazszxzify#=x
e dB xs (eg e1) = (dB xs eg) (dB xs e7)
e dB xs (Ax e) =\ (dB (z : xs) e)

Krivine Abstract Machine

This provides an elegant way to “compile” evaluation in call-by-name. Note that we avoid
to have to define substitution in this way. The use of closure goes back Peter Landin (“The
Mechanical Evaluation of Expressions”, 1964).

A closure u is a pair tp of a term and an environment, where an environment p is a list of
closures.

Krivine Abstract Machine has for states ¢ | p | S where tp is a closure and S is a stack of
values. The small step semantics is

o (tp,v)|S—=t|p|S n+1l|(wrv)|S—=n|v]|S

At plu:S—t](up)|S

t0t1|p‘S—>t0’p|(t1p)2S

So abstraction is “pop” while application is “push”.
We can then evaluate (AA 1 (1 0)) I I where I =X 0 or § 6 where 6 = A 0 0.

Krivine Abstract Machine, other presentation

We define
e,t n=nleelle n = 0|n+1

c u= (Ae,p)|cec p = ()|pc
We define substitution

0(p,c)=c (n+1)(p,c)=np (e e1)p=ceop (e1p) (Ae)p=(Ae,p)



and we can present the evaluation rule (call-by-name) as rules for deriving ¢ — ¢/

c—d
cep—d (At, p) ¢ — t(p,c)

These rules can be “summarized” by the rule

(Mt,p)cer ... e > t(pyc)er ... ey

For instance, if 6 = A 0 0 then §() 6() — d() d().



