
Lecture 4

Untyped λ-calculus, call-by-name

This is in Chapter 5 of Pierce’s book and in the Agda book of Kokke and Wadler.

We recall the syntax
e ::= x | e e | λx e

We define the set of free variables of e as follows.

FV (x) = {x} FV (e0 e1) = FV (e0) ∪ FV (e1) FV (λ x e) = FV (e)− {x}

An expression e is closed if we have FV (e) = ∅.
We define subsitution e(t/x) for t closed. It is by case on e

• if e = x then e(t/x) = t

• if e = y 6= x then e(t/x) = y

• if e = e0 e1 then e(t/x) = e0(t/x) e1(t/x)

• if e = λx e′ then e(t/x) = e

• if e = λy e′ with y 6= x then e(t/x) = λy e′(t/x)

We then define a value to be a closed expression of the form λx e.

v ::= λx e

We define the call-by-name evaluation relation e→ e′ for e and e′ closed expressions

e→ e′

e e1 → e′ e1 (λx e) t→ e(t/x)

Note that if δ = λx x x then δ is a value and δ δ → δ δ, so we have ¬∃e′ NF (δ δ, e′)

This is closer to the evaluation in Haskell but there is a difference. In call-by-name, we may
evaluate several time the same expression, as in

e = (λyλx y (y x)) t I

where t→∗ I and I = λx x. The expression e will reduce to I but t will be evaluated twice.
The evaluation in Haskell is call-by-need which is more complex to describe.

The description does not work for non closed terms. For instance if T = λxλy x we expect
T e0 e1 →∗ e0. But if we take T y e1 we have T y → (λy x)(y/x) = λy y and then T y e1 →
(λy y) e1 → e1. What happens here is a capture of variables. This problem appears in the first
implementation of LISP (by Steve Russell who is also known as the first implementor of video
game, Spacewar!).

1

de Bruijn representation

We define the terms (in de Bruijn notation) as

t ::= n | λt | t t

namely deBruijn index, or abstraction, or application.
The expressions λx x and λy y should be considered to be the same (the names of bound

variables should not matter.) There is an elegant alternative representation of λ-terms where
bound variables are represented by the “distance” to their introducing abstractions. This was
used previously in compiling the language Algol.

E.g. λxλy y (y x) is written λλ0 (0 1) while λyλx y (y x) is written λλ1 (1 0). The
algorithm is the following: the function dB takes a list of names and an expression and builds
an expression with de Bruijn index.

• dB (x : xs) x = 0

• dB (y : xs) x = 1 + dB xs x if y 6= x

• dB xs (e0 e1) = (dB xs e0) (dB xs e1)

• dB xs (λx e) = λ (dB (x : xs) e)

Krivine Abstract Machine

This provides an elegant way to “compile” evaluation in call-by-name. Note that we avoid
to have to define substitution in this way. The use of closure goes back Peter Landin (“The
Mechanical Evaluation of Expressions”, 1964).

A closure u is a pair tρ of a term and an environment, where an environment ρ is a list of
closures.

Krivine Abstract Machine has for states t | ρ | S where tρ is a closure and S is a stack of
values. The small step semantics is

0 | (tρ, ν) | S → t | ρ | S n+ 1 | (u, ν) | S → n | ν | S

λt | ρ | u : S → t | (u, ρ) | S

t0 t1 | ρ | S → t0 | ρ | (t1ρ) : S

So abstraction is “pop” while application is “push”.
We can then evaluate (λλ 1 (1 0)) I I where I = λ 0 or δ δ where δ = λ 0 0.

Krivine Abstract Machine, other presentation

We define
e, t ::= n | e e | λe n ::= 0 | n+ 1

c ::= (λe, ρ) | c c ρ ::= () | ρ, c

We define substitution

0(ρ, c) = c (n+ 1)(ρ, c) = nρ (e0 e1)ρ = e0ρ (e1ρ) (λe)ρ = (λe, ρ)

2

and we can present the evaluation rule (call-by-name) as rules for deriving c→ c′

c→ c′

c c1 → c′ c1 (λt, ρ) c→ t(ρ, c)

These rules can be “summarized” by the rule

(λt, ρ) c c1 . . . cn → t(ρ, c) c1 . . . cn

For instance, if δ = λ 0 0 then δ() δ()→ δ() δ().

3

