Lecture 4

Untyped λ-calculus, call-by-name

This is in Chapter 5 of Pierce's book and in the Agda book of Kokke and Wadler.
We recall the syntax

$$
e::=x|e e| \lambda x e
$$

We define the set of free variables of e as follows.

$$
F V(x)=\{x\} \quad F V\left(e_{0} e_{1}\right)=F V\left(e_{0}\right) \cup F V\left(e_{1}\right) \quad F V(\lambda x e)=F V(e)-\{x\}
$$

An expression e is closed if we have $F V(e)=\emptyset$.
We define subsitution $e(t / x)$ for t closed. It is by case on e

- if $e=x$ then $e(t / x)=t$
- if $e=y \neq x$ then $e(t / x)=y$
- if $e=e_{0} e_{1}$ then $e(t / x)=e_{0}(t / x) e_{1}(t / x)$
- if $e=\lambda x e^{\prime}$ then $e(t / x)=e$
- if $e=\lambda y e^{\prime}$ with $y \neq x$ then $e(t / x)=\lambda y e^{\prime}(t / x)$

We then define a value to be a closed expression of the form $\lambda x e$.

$$
v::=\lambda x e
$$

We define the call-by-name evaluation relation $e \rightarrow e^{\prime}$ for e and e^{\prime} closed expressions

$$
\frac{e \rightarrow e^{\prime}}{e e_{1} \rightarrow e^{\prime} e_{1}} \quad \overline{(\lambda x e) t \rightarrow e(t / x)}
$$

Note that if $\delta=\lambda x x x$ then δ is a value and $\delta \delta \rightarrow \delta \delta$, so we have $\neg \exists e^{\prime} N F\left(\delta \delta, e^{\prime}\right)$
This is closer to the evaluation in Haskell but there is a difference. In call-by-name, we may evaluate several time the same expression, as in

$$
e=(\lambda y \lambda x y(y x)) t I
$$

where $t \rightarrow^{*} I$ and $I=\lambda x x$. The expression e will reduce to I but t will be evaluated twice.
The evaluation in Haskell is call-by-need which is more complex to describe.
The description does not work for non closed terms. For instance if $T=\lambda x \lambda y x$ we expect $T e_{0} e_{1} \rightarrow^{*} e_{0}$. But if we take $T y e_{1}$ we have $T y \rightarrow(\lambda y x)(y / x)=\lambda y y$ and then $T y e_{1} \rightarrow$ ($\lambda y y) e_{1} \rightarrow e_{1}$. What happens here is a capture of variables. This problem appears in the first implementation of LISP (by Steve Russell who is also known as the first implementor of video game, Spacewar!).

de Bruijn representation

We define the terms (in de Bruijn notation) as

$$
t::=n|\lambda t| t t
$$

namely deBruijn index, or abstraction, or application.
The expressions $\lambda x x$ and $\lambda y y$ should be considered to be the same (the names of bound variables should not matter.) There is an elegant alternative representation of λ-terms where bound variables are represented by the "distance" to their introducing abstractions. This was used previously in compiling the language Algol.
 algorithm is the following: the function $d B$ takes a list of names and an expression and builds an expression with de Bruijn index.

- $d B(x: x s) x=0$
- $d B(y: x s) x=1+d B x s x$ if $y \neq x$
- $d B x s\left(e_{0} e_{1}\right)=\left(d B x s e_{0}\right)\left(d B x s e_{1}\right)$
- $d B x s(\lambda x e)=\lambda(d B(x: x s) e)$

Krivine Abstract Machine

This provides an elegant way to "compile" evaluation in call-by-name. Note that we avoid to have to define substitution in this way. The use of closure goes back Peter Landin ("The Mechanical Evaluation of Expressions", 1964).

A closure u is a pair $t \rho$ of a term and an environment, where an environment ρ is a list of closures.

Krivine Abstract Machine has for states $t|\rho| S$ where $t \rho$ is a closure and S is a stack of values. The small step semantics is

$$
\begin{gathered}
\overline{0|(t \rho, \nu)| S} \rightarrow t|\rho| S \quad \overline{n+1|(u, \nu)| S \rightarrow n|\nu| S} \\
\overline{\lambda t|\rho| u: S \rightarrow t|(u, \rho)| S} \\
\overline{t_{0} t_{1}|\rho| S \rightarrow t_{0}|\rho|\left(t_{1} \rho\right): S}
\end{gathered}
$$

So abstraction is "pop" while application is "push".
We can then evaluate $(\lambda \lambda 1(10)) I I$ where $I=\lambda 0$ or $\delta \delta$ where $\delta=\lambda 00$.

Krivine Abstract Machine, other presentation

We define

$$
\begin{array}{rl}
e, t::=n|e e| \lambda e & n::=0 \mid n+1 \\
c::=(\lambda e, \rho) \mid c c & \rho::=() \mid \rho, c
\end{array}
$$

We define substitution

$$
0(\rho, c)=c \quad(n+1)(\rho, c)=n \rho \quad\left(e_{0} e_{1}\right) \rho=e_{0} \rho\left(e_{1} \rho\right) \quad(\lambda e) \rho=(\lambda e, \rho)
$$

and we can present the evaluation rule (call-by-name) as rules for deriving $c \rightarrow c^{\prime}$

$$
\frac{c \rightarrow c^{\prime}}{c c_{1} \rightarrow c^{\prime} c_{1}} \quad \overline{(\lambda t, \rho) c \rightarrow t(\rho, c)}
$$

These rules can be "summarized" by the rule

$$
\overline{(\lambda t, \rho) c c_{1} \ldots c_{n} \rightarrow t(\rho, c) c_{1} \ldots c_{n}}
$$

For instance, if $\delta=\lambda 00$ then $\delta() \delta() \rightarrow \delta() \delta()$.

