Lecture 3

Arithmetic expressions

This is in Chapter 8 of Pierce's book.

We presented the language

$$e ::=$$
 true | false | if $e e e | 0 |$ succ $e |$ pred $e |$ isZero e

with the values

$$v \ ::= \ bv \ | \ nv \qquad bv \ ::= \ \mathsf{true} \ | \ \mathsf{false} \qquad nv \ ::= \ 0 \ | \ \mathsf{succ} \ nv$$

and the one step evaluation rule

$\overline{\text{if true } e_0 \ e_1 \rightarrow e_0}$	if false $e_0 \ e_1 \rightarrow e_1$	$\frac{e \to e'}{\text{if } e \ e_0 \ e_1 \to \text{if } e' \ e_0 \ e_1}$
	$\frac{e \to e'}{\operatorname{succ} e \to \operatorname{succ} e'}$	
$\overline{isZero} \ 0 \to true$	$\overline{isZero} \ (succ \ nv) \to false$	$\frac{e \rightarrow e'}{\text{isZero } e \rightarrow \text{isZero } e'}$
pred $0 \rightarrow 0$	pred (succ nv) $\rightarrow nv$	$\frac{e \to e'}{pred \ e \to pred \ e'}$

For this language we have some expressions that are in normal form but are not values, e.g. is Zero true or if $0 \ 0 \ 0$.

We write stuck(e) if e is in normal form, i.e. $\neg \exists e' \ e \rightarrow e'$ and e is not a value.

Types

We introduce types

$$T ::= Nat | Bool$$

with the following *typing rules*. What should be noted is that we use the same formalism of *inference rules* to describe the evaluation relation and the typing system.

		e:Bool e	$_0:T e_1:T$
true : Bool	false : Bool	if $e e_0 e_1 : T$	
	e:Nat	e:Nat	e:Nat
$\overline{0:Nat}$	$\overline{succ} \ e : Nat$	pred $e: Nat$	$\overline{isZero\ e:Bool}$

Note that e = if true 0 true is *not* of type Nat but we have $e \to 0$ and 0: Nat

Theorem 0.1 (progress) If e: T then e is a value or $\exists e' \ e \rightarrow e'$

Theorem 0.2 (preservation) If e: T and $e \to e'$ then e': T

Theorem 0.3 If e: T and $e \rightarrow^* e'$ then e' is not stuck.

This expresses that "well-typed programs cannot go wrong" which was first proved by Milner 1978 using a different method.

Confluence

All the evaluation relations we have seen so far are deterministic. A more general notion is to be *confluent*: if $e \to e_1$ and $e \to e_2$ then there exists e' such that $e_1 \to e'$ and $e_2 \to e'$.

Theorem 0.4 If \rightarrow is deterministic it is confluent.

It is simply because in this case if $e \to^* e_1$ and $e \to^* e_2$ then there we have $e_1 \to^* e_2$ (and we can take $e' = e_2$) or $e_2 \to^* e_1$ (and we can take $e' = e_1$).

Theorem 0.5 If \rightarrow is confluent and $NF(e, e_1)$ and $NF(e, e_2)$ then $e_1 = e_2$.

We recall that NF(e, e') means that $e \to^* e'$ and e' is in normal form.

Untyped λ -calculus

This is in Chapter 5 of Pierce's book and in the Agda book of Kokke and Wadler.

We now introduce a programming language such that the predicate $\exists e' \ NF(e, e')$ (halting problem) is *not* decidable. Historically, this was actually the *first* example of a provably non decidable problem in mathematics (Church, 1936).

$$e ::= x \mid e \mid \lambda x \mid e$$

We define the set of free variables of e as follows.

$$FV(x) = \{x\}$$
 $FV(e_0 \ e_1) = FV(e_0) \cup FV(e_1)$ $FV(\lambda \ x \ e) = FV(e) - \{x\}$

An expression e is closed if we have $FV(e) = \emptyset$. We define substitution e(t/x) for t closed. It is by case on e

- if e = x then e(t/x) = t
- if $e = y \neq x$ then e(t/x) = y
- if $e = e_0 e_1$ then $e(t/x) = e_0(t/x) e_1(t/x)$
- if $e = \lambda x e'$ then e(t/x) = e
- if $e = \lambda y e'$ with $y \neq x$ then $e(t/x) = \lambda y e'(t/x)$

We then define a *value* to be a closed expression of the form $\lambda x \ e$.

$$v ::= \lambda x e$$

We define the *call-by-value* evaluation relation $e \rightarrow e'$ for e and e' *closed* expressions

$$\frac{e \to e'}{e \ e_1 \to e' \ e_1} \qquad \frac{e_1 \to e'_1}{v \ e_1 \to v \ e'_1} \qquad \overline{(\lambda x \ e) \ v \to e(v/x)}$$

Note that if $\delta = \lambda x \ x \ x$ then δ is a value and $\delta \ \delta \to \delta \ \delta$, so we have $\neg \exists e' \ NF(\delta \ \delta, e')$

Church (1936) has essentially proved the following result.

Theorem 0.6 The predicate $\exists e' NF(e, e')$ is not decidable.