
Lecture 2

Multistep evaluation relation

This lecture closely followed Software foundations, Vol. 2, on Small Step Operational Semantics.

Given a binary relation → we define its reflexive transitive closure by the rules

e →∗ e
e → e1 e1 →∗ e2

e →∗ e2

Theorem 0.1 →∗ is reflexive, transitive and contains →. It is the least reflexive transitive
relation which contains →.

The next result was already in Frege’s 1879 book (which introduced quantifiers and proof
system for higher order logic).

Theorem 0.2 If → is deterministic and e →∗ e1 and e →∗ e2 then e1 →∗ e2 ∨ e2 →∗ e1

We define NF (e, e1) to mean e →∗ e1 and ¬∃e′ (e1 → e′)

Theorem 0.3 If → is deterministic and NF (e, e1) and NF (e, e2) then e1 = e2

Intuitively NF (e, e1) means that e1 is the result of the computation of e. The Theorem
states that if the one step eveluation relation is deterministic then the result of the computation
is uniquely determined (if it exists).

In the particular case of arithmetic expressions

e ::= v | add e e v ::= const n

where
n ::= 0 | succ n

We can define the value as a function from expressions to natural numbers

[[const n]] = n [[add e0 e1]] = [[e0]] + [[e1]]

We have described leftmost evaluation by the rules

add (const n0) (const n1) → const (n0 + n1)
(C)

e0 → e′0
add e0 e1 → add e′0 e1

(A0)
e1 → e′1

add (const n) e1 → add (const n) e′1
(A1)

We have seen that this is a deterministic evaluation relation. In this case, the evaluation of any
expression terminates.

1

Theorem 0.4 We have ∀e∃e1 NF (e, e1). Actually ∀e NF (e, const([[e]])).

The proof is by induction on e, using the following.

Lemma 0.5 If e →∗ e′ then add e e1 →∗ add e′ e1 and add v e →∗ add v e′.

We can define in a similar way Boolean expressions

e ::= v | if e e e v ::= const b

where
b ::= true | false

and the evaluation rules are

if (const true) e0 e1 → e0 if (const false) e0 e1 → e1

e → e′

if e e0 e1 → if e′ e0 e1

Theorem 0.6 The relation → is deterministic and we have ∀e∃e′ NF (e, e′).

A simple abstract machine and compiler correctness proof

What we present is a simplified version of the fundamental paper of McCarthy and Painter on
correctness of a compiler for arithmetic expressions (1967).

We define the instruction list (code) as

cd ::= LOAD n cd | ADD cd | HALT

and the compilation function is

comp (const n) cd = LOAD n cd comp (add e0 e1) cd = comp e1 (comp e0 (ADD cd))

The machine has then for state a pair cd, S where cd is a code and S is a stack of numbers. The
small step semantics for this machine is

ADD cd, n1 : n0 : S → cd, (n1 + n0) : S LOAD n cd, S → cd, n : S

We can now state, and prove by induction on e

Theorem 0.7 For all expression e we have ∀cd ∀S comp e cd, S →∗ cd, [[e]] : S

2

