Lecture 1

Arithmetic expression

This lecture closely followed Software foundations, Vol. 2, on Small Step Operational Semantics.

The expressions are
e == constn |addee

where
n = 0|succn

Expressions form a type exp. We can define the value as a function from expressions to natural
numbers
[const n] = n [add eg e1] = [eo] + [e1]

But we also can define function that refers to the syntactic form of an expression, for instance
depth (const n) =0 depth (add eg e1) = 1 + maz (depth ep) (depth ey)

We describe leftmost evaluation by the rules

C)

add (const ng) (const ny) — const (ng + ny)

er — €]
add (const n) e; — add (const n) €

ey — €
add ey e; — add ¢, e

(A1)

(Ao)

We say that e — €’ if it is the conclusion of a derivation tree using these primitive inference
rules.

This defines a one step evaluation relation.

This defines a binary relation on expressions.

To simplify, we write simply n instead of const n. The relation e — ¢’ can be chracterised
as being the least relation R(e,¢’) satisfying the conditions

e (1 =Vngm R(add ng ni,ng + nl)
o Cy =Veg e e1 R(ep,e) = R(add eg e, add e, ;)

e C3=Vn e €] R(er,e)) = R(add n ey,add n €))

It is a good exercice in Agda to show that if R(e,e’) satisfies these three conditions then we
have R(e,e’) whenever e — ¢’. This amounts to define a function of type

(e e :exp)(p:e—€) R(e,e€)

by structural induction on p.



Lemma 0.1 Ife — €’ then e # const n for all n.

Proof. We define R(e,e’) by Vn e # const n and we can check that this relation satisfies the
three C1, Co, Cs. O

A binary relation R is said to be deterministic iff we have
Vee e (Red N Ree')=é =¢"
Theorem 0.2 The relation defined by the rule C, Ay, A1 is deterministic.

Proof. We see as defining a function which takes as argument a proof p of e — ¢’ and a proof
q of e — €” and produces a proof of ¢ = e”. We then do the proof by case analysis of p and ¢
and by structural induction on p and gq.
The first case is if p is directly the axiom (C'). This implies that e is of the form add (const ng) (const n1)
and €’ is const (ng + n1). Then we can see using the previous Lemma that ¢ has to be (C) as
well and so €¢” has to be const (ng + n1) as well. This concludes the analysis of the first case.
The other cases are exercises. O

Another way to state this result is that the rule

e—e e—eé

el = e

is admissible.
We define a predicate on expressions: e is a value iff e is of the form const n. We can describe
the expressions as follows

e m=v|addee v = constn
and the rule (A;) can be rewritten as

er — €}
add v e; — add v €]

(A1)

Theorem 0.3 (strong progress) For all e we have that either e is a value or 3 ¢ e — €.

We say that e is in normal form iff we have =3¢’ e — ¢’. It is direct to see that if e is a value
then e is in normal form. The second exercise is to use strong progress to prove the following.

Theorem 0.4 An expression is a value iff it is in normal form.



