Lecture 1

Arithmetic expression

This lecture closely followed Software foundations, Vol. 2, on Small Step Operational Semantics. The expressions are

$$
e::=\text { const } n \mid \text { add } e e
$$

where

$$
n::=0 \mid \operatorname{succ} n
$$

Expressions form a type exp. We can define the value as a function from expressions to natural numbers

$$
\llbracket \text { const } n \rrbracket=n \quad \llbracket \operatorname{add} e_{0} e_{1} \rrbracket=\llbracket e_{0} \rrbracket+\llbracket e_{1} \rrbracket
$$

But we also can define function that refers to the syntactic form of an expression, for instance

$$
\operatorname{depth}(\text { const } n)=0 \quad \text { depth }\left(\text { add } e_{0} e_{1}\right)=1+\max \left(\text { depth } e_{0}\right)\left(\text { depth } e_{1}\right)
$$

We describe leftmost evaluation by the rules

$$
\begin{gathered}
\frac{\text { add }\left(\text { const } n_{0}\right)\left(\text { const } n_{1}\right) \rightarrow \text { const }\left(n_{0}+n_{1}\right)}{}(C) \\
\frac{e_{0} \rightarrow e_{1}^{\prime}}{\text { add } e_{0} e_{1} \rightarrow \text { add } e_{0}^{\prime} e_{1}^{\prime}}\left(A_{0}\right) \quad \frac{e_{1}}{\text { add (const } n) e_{1} \rightarrow \text { add }(\text { const } n) e_{1}^{\prime}}\left(A_{1}\right)
\end{gathered}
$$

We say that $e \rightarrow e^{\prime}$ if it is the conclusion of a derivation tree using these primitive inference rules.

This defines a one step evaluation relation.
This defines a binary relation on expressions.
To simplify, we write simply n instead of const n. The relation $e \rightarrow e^{\prime}$ can be chracterised as being the least relation $R\left(e, e^{\prime}\right)$ satisfying the conditions

- $C_{1}=\forall n_{0} n_{1} R\left(\operatorname{add} n_{0} n_{1}, n_{0}+n_{1}\right)$
- $C_{2}=\forall e_{0} e_{0}^{\prime} e_{1} R\left(e_{0}, e_{0}^{\prime}\right) \Rightarrow R\left(\operatorname{add} e_{0} e_{1}, \operatorname{add} e_{0}^{\prime} e_{1}\right)$
- $C_{3}=\forall n e_{1} e_{1}^{\prime} R\left(e_{1}, e_{1}^{\prime}\right) \Rightarrow R\left(\operatorname{add} n e_{1}\right.$, add $\left.n e_{1}^{\prime}\right)$

It is a good exercice in Agda to show that if $R\left(e, e^{\prime}\right)$ satisfies these three conditions then we have $R\left(e, e^{\prime}\right)$ whenever $e \rightarrow e^{\prime}$. This amounts to define a function of type

$$
\Pi\left(e e^{\prime}: \exp \right)\left(p: e \rightarrow e^{\prime}\right) R\left(e, e^{\prime}\right)
$$

by structural induction on p.

Lemma 0.1 If $e \rightarrow e^{\prime}$ then $e \neq$ const n for all n.
Proof. We define $R\left(e, e^{\prime}\right)$ by $\forall n e \neq$ const n and we can check that this relation satisfies the three C_{1}, C_{2}, C_{3}.

A binary relation R is said to be deterministic iff we have

$$
\forall e e^{\prime} e^{\prime \prime}\left(R e e^{\prime} \wedge R e e^{\prime \prime}\right) \Rightarrow e^{\prime}=e^{\prime \prime}
$$

Theorem 0.2 The relation defined by the rule C, A_{0}, A_{1} is deterministic.
Proof. We see as defining a function which takes as argument a proof p of $e \rightarrow e^{\prime}$ and a proof q of $e \rightarrow e^{\prime \prime}$ and produces a proof of $e^{\prime}=e^{\prime \prime}$. We then do the proof by case analysis of p and q and by structural induction on p and q.

The first case is if p is directly the axiom (C). This implies that e is of the form add (const n_{0}) (const n_{1}) and e^{\prime} is const $\left(n_{0}+n_{1}\right)$. Then we can see using the previous Lemma that q has to be (C) as well and so $e^{\prime \prime}$ has to be const $\left(n_{0}+n_{1}\right)$ as well. This concludes the analysis of the first case.

The other cases are exercises.
Another way to state this result is that the rule

$$
\frac{e \rightarrow e^{\prime} \quad e \rightarrow e^{\prime \prime}}{e^{\prime}=e^{\prime \prime}}
$$

is admissible.
We define a predicate on expressions: e is a value iff e is of the form const n. We can describe the expressions as follows

$$
e::=v \mid \text { add } e e \quad v::=\text { const } n
$$

and the rule $\left(A_{1}\right)$ can be rewritten as

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{\operatorname{add} v e_{1} \rightarrow \operatorname{add} v e_{1}^{\prime}}\left(A_{1}\right)
$$

Theorem 0.3 (strong progress) For all e we have that either e is a value or $\exists e^{\prime} e \rightarrow e^{\prime}$.
We say that e is in normal form iff we have $\neg \exists e^{\prime} e \rightarrow e^{\prime}$. It is direct to see that if e is a value then e is in normal form. The second exercise is to use strong progress to prove the following.

Theorem 0.4 An expression is a value iff it is in normal form.

