
Lecture 1

Arithmetic expression

This lecture closely followed Software foundations, Vol. 2, on Small Step Operational Semantics.

The expressions are
e ::= const n | add e e

where
n ::= 0 | succ n

Expressions form a type exp. We can define the value as a function from expressions to natural
numbers

[[const n]] = n [[add e0 e1]] = [[e0]] + [[e1]]

But we also can define function that refers to the syntactic form of an expression, for instance

depth (const n) = 0 depth (add e0 e1) = 1 + max (depth e0) (depth e1)

We describe leftmost evaluation by the rules

add (const n0) (const n1)→ const (n0 + n1)
(C)

e0 → e′0
add e0 e1 → add e′0 e1

(A0)
e1 → e′1

add (const n) e1 → add (const n) e′1
(A1)

We say that e → e′ if it is the conclusion of a derivation tree using these primitive inference
rules.

This defines a one step evaluation relation.
This defines a binary relation on expressions.
To simplify, we write simply n instead of const n. The relation e → e′ can be chracterised

as being the least relation R(e, e′) satisfying the conditions

• C1 = ∀n0 n1 R(add n0 n1, n0 + n1)

• C2 = ∀e0 e′0 e1 R(e0, e
′
0)⇒ R(add e0 e1, add e′0 e1)

• C3 = ∀n e1 e′1 R(e1, e
′
1)⇒ R(add n e1, add n e′1)

It is a good exercice in Agda to show that if R(e, e′) satisfies these three conditions then we
have R(e, e′) whenever e→ e′. This amounts to define a function of type

Π(e e′ : exp)(p : e→ e′) R(e, e′)

by structural induction on p.

1



Lemma 0.1 If e→ e′ then e 6= const n for all n.

Proof. We define R(e, e′) by ∀n e 6= const n and we can check that this relation satisfies the
three C1, C2, C3.

A binary relation R is said to be deterministic iff we have

∀ e e′ e′′ (R e e′ ∧ R e e′′)⇒ e′ = e′′

Theorem 0.2 The relation defined by the rule C,A0, A1 is deterministic.

Proof. We see as defining a function which takes as argument a proof p of e → e′ and a proof
q of e→ e′′ and produces a proof of e′ = e′′. We then do the proof by case analysis of p and q
and by structural induction on p and q.

The first case is if p is directly the axiom (C). This implies that e is of the form add (const n0) (const n1)
and e′ is const (n0 + n1). Then we can see using the previous Lemma that q has to be (C) as
well and so e′′ has to be const (n0 + n1) as well. This concludes the analysis of the first case.

The other cases are exercises.

Another way to state this result is that the rule

e→ e′ e→ e′′

e′ = e′′

is admissible.
We define a predicate on expressions: e is a value iff e is of the form const n. We can describe

the expressions as follows

e ::= v | add e e v ::= const n

and the rule (A1) can be rewritten as

e1 → e′1
add v e1 → add v e′1

(A1)

Theorem 0.3 (strong progress) For all e we have that either e is a value or ∃ e′ e→ e′.

We say that e is in normal form iff we have ¬∃e′ e → e′. It is direct to see that if e is a value
then e is in normal form. The second exercise is to use strong progress to prove the following.

Theorem 0.4 An expression is a value iff it is in normal form.

2


