

RPL: The IP routing protocol designed for low
power and lossy networks

Internet Protocol for Smart Objects (IPSO) Alliance

JP Vasseur, Cisco Fellow, Cisco Systems

Navneet Agarwal, Technical Leader, Cisco Systems
Jonathan Hui, Software Engineer, Cisco Systems

Zach Shelby, Chief Nerd, Sensinode
Paul Bertrand, Founder, VP, Watteco SAS

Cedric Chauvenet, Watteco SAS

April 2011

1. Introduction: the unique routing requirements of IP smart object
networks

IP smart object networks are undoubtedly one of the key components of the next
wave of the Internet, with an endless number of new opportunities and applications
thanks to newly designed IP based protocols (see [1], [2] and [3]).

Still such networks also present a number of technical challenges that have been
explored in various IPSO white papers. The aim of this white paper is to exclusively
focus on the routing aspects of IP Smart Object Networks.

Such technical challenges include issues related to power consumption, small form
factors and communication challenges (low speed, high error rates, …) used to form
networks. The challenges are further complicated as there is interdependence between
the issues. For example, the level of communication within the smart objects
networks impacts the power consumption in the smart object. Also, the network
protocol design should be cognizant of the power consumption and how much data to
send. Additional factors such as cost, available power and form factor of the device
limits the amount of computing resources that can be put in the smart object. For
example, a typical off-the-shelf available smart object would have only tens of
kilobytes of RAM/flash with small micro-controllers/processors. Thus the software on
the smart objects must not only be power-efficient but must be able to run in a small
memory footprint device.

Smart object networks are potentially very large scale consisting of potentially
(hundreds of) thousands of nodes often operating in harsh and remote environments.
Individual networks built with thousands of smart objects are common. Data
collection is typically sampled less frequently but the reporting, collection and
analysis of this data leads to scaling issues as the network is designed to work for
years. Note also that such nodes are usually unattended and must support some forms
of auto-configuration and management.

Another factor related to power consumption is the communication medium of the
smart object network. In order to optimize on the power consumption these devices
normally use media operating on low power communication standards. These could
include low-power wireless communication as well as power line communication
protocols where communication happens over the same set of media that carries
electricity. It is worth noting some low power link layers designed for LLNs that
are working with RPL: IEEE 802.15.4, Wavenis, IEEE P1901.2, ITU G.hnem.... (see
[4]). The communication over this type of media is unreliable as it is uncertain if the
intended device received a message sent by another device. The message could have
been disrupted partially or completely due to physical obstruction in the ‘line-of-
sight’ or due to various sources of noise and interference. The unreliable nature of the
communications in the context of smart object networks is referred to as being ‘lossy’
and this is one of the inherent characteristics, which should be taken into account
during any software or communication/network protocol design. Such networks are
also referred to as Low power and Lossy Networks (LLNs).

Routing is the process by which the network determines what path(s) the messages
should take through the network. Routing in LLN has to be cognizant of the above
issues and treat this as input requirements for design. The routing protocol design in
this type of network should be sensitive to how much data a network can handle, the
speed and the devices’ capabilities. For example, in smart object networks consisting
of battery-powered nodes, the act of communication consumes energy and nodes that
communicate more frequently drain their energy faster.

LLNs are known to be lossy, as we have seen. This “lossyness” may be transient and
unpredictable. Thus the routing protocol must be robust and be prepared to deal with
these network characteristics. In traditional networks any loss of connectivity triggers
a desire to quickly re-converge and find alternate routing paths. This is desirable so
that data traffic is re-routed around network failures as quickly as possible and with as
little loss of data. To that end, a number of techniques such as Fast Reroute for
IP/MPLS have been designed for link state protocols such as OSPF or ISIS. This
action is seen as overkill in LLNs due to the lossyness being transient and would
unavoidably lead to lack of stability and unacceptable control plane overhead. A
preferred model should be to ‘under-react’ to smooth over the transient loss of
connectivity and have a confidence-monitoring model before triggering a full re-
convergence.

Furthermore, routing in LLNs should be able to self manage to a large extent and be
able to heal itself without requiring manual intervention. For example, it is not
possible for a system administrator to assign an address manually or be able to enter
passwords for accessing the network. In addition to large addressing spaces provided
by IPv6, such auto-configuration capability (known as IPv6 stateless auto-
configuration) make IPv6 an ideal candidate for LLNs.

Smart object networks operate on a variety of link types having variable quality,
which is unpredictable due to various surrounding environment factors. Unlike
traditional links that have a low bit-error rate (BER) the packet delivery ratios (PDR)
in LLNs show wide variations. This is true for not only wireless links but PLC links
as well which are impacted by impedance variations, interferences etc. Figure 1
shows a typical Packet Delivery Ratio over a low power wireless link.

Figure 1 – PDR Variation over time on IEEE 802.15.4

The link quality has direct implication on routing protocol design with respect to
convergence time. While traditional routing protocols are designed to minimize the
convergence time due to the voice and video traffic requirements a similar approach
for LLN would potentially lead to routing instabilities, various oscillations and
routing loops. Furthermore, smart objects do not send a large amount of traffic unlike
voice and video traffic on high-speed IP networks. In these environments, it is a
reasonable expectation that during transient instabilities the traffic is locally
redirected to an alternate next hop without triggering a global re-convergence.

Another aspect of these networks is the dynamic nature of the metrics. Traditional
routing protocols have experimented and avoided the use of dynamic metrics due to
risk of route oscillations and network instability. But in LLNs, node and link metrics
do change over a period of time (link quality going down due to interference, CPU
overloading, node switching from line power to battery power, etc) and the routing
protocol should be able to adapt to it.

2. RPL: an open routing protocol for IP smart object networks
standardized by the IETF

The Internet Engineering Task Force (IETF) quickly recognized the need to form a
new Working Group to standardize an IPv6-based routing solution for IP smart object
networks, which led to the formation of a new Working Group called ROLL (Routing
Over Low power and Lossy) networks in 2008: http://www.ietf.org/html.charters/roll-
charter.html.

The ROLL Working Group conducted a detailed analysis of the routing requirements
focusing on several applications: urban networks including smart grid, industrial

automation, home and building automation. This set of applications has been
recognized to be sufficiently wide to cover most of the applications of the Internet of
Things. The objective of the WG was to design a routing protocol for LLNs,
supporting a variety of link layers, sharing the common characteristics of being low
bandwidth, lossy and low power. Thus the routing protocol should make no specific
assessment on the link layer, which could either be wireless such as IEEE 802.15.4,
IEEE 802.15.4g, (low power) Wifi or Powerline Communication (PLC) using IEEE
802.15.4 such as IEEE P1901.2..

The result of this Working Group was the “Ripple” routing protocol (RPL)
specification, along with supporting specifications on routing metrics, objective
functions and security. The rest of this document gives an introduction to RPL and
these related specifications.

Note that RPL operates at the IP layer according to the IP architecture, and thus
allows for routing across multiple types of link layers, in contrast with other form of
“routing” operating at lower layer (e.g. link layers).

3. An overview of RPL mode of operation

RPL is a Distance Vector IPv6 routing protocol for LLNs that specifies how to build a
Destination Oriented Directed Acyclic Graph (DODAG sometimes referred to as a
graph in the rest of this document) using an objective function and a set of
metrics/constraints. The objective function operates on a combination of metrics and
constraints to compute the ‘best’ path. There could be several objective functions in
operation on the same node and mesh network because deployments vary greatly with
different objectives and a single mesh network may need to carry traffic with very
different requirements of path quality. For example, several DODAGs may be used
with the objective to (1) ‘Find paths with best ETX [Expected Transmissions] values
(metric) and avoid non-encrypted links (constraint)’ or (2) ‘Find the best path in terms
of latency (metric) while avoiding battery-operated nodes (constraint)’. The objective
function does not necessarily specify the metric/constraints but does dictate some
rules to form the DODAG (for example, the number of parents, back-up parents, use
of load-balancing, …).

The graph built by RPL is a logical routing topology built over a physical network to
meet a specific criteria and the network administrator may decide to have multiple
routing topologies (graphs) active at the same time used to carry traffic with different
set of requirements. A node in the network can participate and join one or more
graphs (in this case we call them “RPL instances”) and mark the traffic according to
the graph characteristic to support QoS aware and constraint based routing. The
marked traffic flows up and down along the edges of the specific graph.

DODAG Building Process
	

The graph building process starts at the root or LBR (LowPAN Border Router), which
is configured by the system administrator. There could be multiple roots configured in
the system. The RPL routing protocol specifies a set of new ICMPv6 control

messages to exchange graph related information. These messages are called DIS
(DODAG Information Solicitation), DIO (DODAG Information Object) and DAO
(DODAG Destination Advertisement Object).

The root starts advertising the information about the graph using the DIO message.
The nodes in the listening vicinity (neighboring nodes) of the root will receive and
process DIO message potentially from multiple nodes and makes a decision based on
certain rules (according to the objective function, DAG characteristics, advertised
path cost and potentially local policy) whether to join the graph or not. Once the node
has joined a graph it has a route toward the graph (DODAG) root. The graph root is
termed as the ‘parent’ of the node. The node computes the ‘rank’ of itself within the
graph, which indicates the “coordinates” of the node in the graph hierarchy. If
configured to act as a router, it starts advertising the graph information with the new
information to its neighboring peers. If the node is a “leaf node”, it simply joins the
graph and does not send any DIO message. The neighboring peers will repeat this
process and do parent selection, route addition and graph information advertisement
using DIO messages. This rippling effect builds the graph edges out from the root to
the leaf nodes where the process terminates. In this formation each node of the graph
has a routing entry towards its parent (or multiple parents depending on the objective
function) in a hop-by-hop fashion and the leaf nodes can send a data packet all the
way to root of the graph by just forwarding the packet to its immediate parent. This
model represents a MP2P (Multipoint-to-point) forwarding model where each node of
the graph has reach-ability toward the graph root. This is also referred to as
UPWARD routing. Each node in the graph has a ‘rank’ that is relative and represents
an increasing coordinate of the relative position of the node with respect to the root in
graph topology. The notion of “rank” is used by RPL for various purposes including
loop avoidance. The MP2P flow of traffic is called the ‘up’ direction in the DODAG.
The various steps of the graph building process are represented in Figure 2.

Figure 2 –

the RPL

DODAG
building

process

The DIS message is used by the nodes to proactively solicit graph information (via
DIO) from the neighboring nodes should it become active in a stable graph
environment using the ‘poll’ or ‘pull’ model of retrieving graph information or in
other conditions.

Similar to MP2P or ‘up’ direction of traffic, which flows from the leaf towards the
root there is a need for traffic to flow in the opposite or ‘down’ direction. This traffic
may originate from outside the LLN network, at the root or at any intermediate nodes
and destined to a (leaf) node. This requires a routing state to be built at every node
and a mechanism to populate these routes. This is accomplished by the DAO
(Destination Advertisement Object) message. DAO messages are used to advertise
prefix reachability towards the leaf nodes in support of the ‘down’ traffic. These
messages carry prefix information, valid lifetime and other information about the
distance of the prefix. As each node joins the graph it will send DAO message to its
parent set. Alternately, a node or root can poll the sub-dag for DAO message through
an indication in the DIO message. As each node receives the DAO message, it
processes the prefix information and adds a routing entry in the routing table. It
optionally aggregates the prefix information received from various nodes in the sub-
dag and sends a DAO message to its parent set. This process continues until the prefix
information reaches the root and a complete path to the prefix is setup. Note that this
mode is called the “storing” mode of operation where intermediate nodes have
available memory to store routing tables. RPL also supports another mode called
“non-storing” mode where intermediate node do not store any routes (discussed later
in this document).

RPL also supports point-to-point (P2P) communication from any node to any other
node in the graph. When a node sends a packet to another node within the LLN
network, the packet travels ‘up’ to a common ancestor at which point it is forwarded
in the ‘down’ direction to the destination. A technique for further optimizing (when
necessary) P2P communication between nodes is being explored by the ROLL WG in
[13].

RPL also provides the ability to perform multi-topology routing (MTR) thanks to the
concept of a DODAG instance identified by an instance-id. The idea is to construct
and identify multiple graphs (DODAGs) over the same physical topology. This
provides a way to provide paths based on different optimization objectives as
specified by the objective function and the routing/constraint metrics. A node can
only join a single graph within an instance-id but can be associated with several
instance-ids simultaneously. This is illustrated in Figure 3. This is helpful to build
multiple routing topologies on a physical mesh network. For example, non-critical
traffic should follow a path avoiding battery-powered nodes whereas more critical
traffic should follow a path of minimum latency.

Figure 3 – Example of Multi-topology-routing using the RPL routing protocol

Another class of traffic can use paths leading to a data aggregator while other traffic
should avoid nodes not supporting link encryption. So routing decisions are more
complex using a variety of metrics and constraints, which could change dynamically.

Within an instance, the routing topology can be segregated among multiple graphs for
various reasons such as providing greater scalability. A node can only be associated
with a single graph within a specific instance but it can join multiple routing
instances. However, the routing protocol allows the movement (or ‘jump’) of a node
to a different graph within the framework of some fundamental rules. As the node
moves to another graph it has to abandon its current parent set, re-compute the new
rank based on its new position and do new parent selection.

Support of dynamic routing metrics and constraints

Metrics and constraints: Routing for an LLN requires a sophisticated routing metric
strategy driven by type of data traffic. A metric is a scalar quantity used as input for
best path selection. A constraint, on the other hand, is used as an additional criterion
to prune links or nodes that do not meet the set of constraints. Metrics and constraints
can be node or link based. Examples of node level metrics are node state attribute,
node energy state etc., while link level metrics can be latency, reliability, link color
etc. The metrics and constraints can be dynamic and the routing protocol “smoothes”
and reacts to the changes in metric and constraint values (see [7]). Additionally,
metrics can be recorded or accumulated. Recorded metrics carry distinct values of
each path while accumulated metric is an aggregation of values along the path.

Storing and Non-storing nodes
	

Each node at the edge of a graph sends a DAO message to allow routing state to be
built for traffic to flow in the ‘down’ direction known as downward routing. This
means that each node in the network would have to store the prefix information from
the DAO messages received from the sub-dag nodes. This has memory implications
and routing table scalability at each node since each prefix entry translates to a
routing entry in the routing table (or less in the presence of routing aggregation).
Some nodes in the network may have significant constraints regarding memory and
may be incapable of storing routing entries for downward routes. These nodes are
classified as non-storing nodes while nodes capable of storing routing information are
called storing nodes.

In non-storing mode, a node uses DAO messages to report its DAO to its parents all
the way to the graph Root. The graph Root uses the information received to piece
together a downward route to a node by using DAO parent sets from each node in the
route. The nodes include the parent information in the ‘transit-info’ field of the DAO
message. Additionally, nodes can pack DAOs by sending a single DAO message
with multiple prefix information. Each prefix information can be associated with its
own transit information. In this mode of operation it is expected that the root of the
DODAG has the capability to store routing information while the nodes in the
DODAG operate in non-storing mode. A mixed mode of operation is not allowed and
all nodes in the graph have to operate in either storing or non-storing mode only.

In the non-storing mode when the root receives a packet destined to a specific
destination in a non-storing graph the root adds the pieced together information in the
source routing header of the packet and forwards it to the next-hop child node in the
network. Each intermediate node examines the information in the source routing
header and forwards the packet to the next-hop child node. This forwarding process is
repeated until the packet reaches the final destination.	
 So	
 for	
 example,	
 in	
 non-­‐storing	

mode,	
 when	
 a	
 node	
 A	
 sends	
 a	
 packet	
 to	
 a	
 node	
 B	
 within	
 the	
 RPL	
 domain,	
 the	

packet	
 first	
 follows	
 the	
 graph	
 up	
 to	
 the	
 root	
 where	
 the	
 routing	
 information	
 is	

stored.	
 At	
 this	
 point,	
 the	
 graph	
 root	
 inspects	
 the	
 destination,	
 consults	
 its	
 routing	

table	
 that	
 contains	
 the	
 path	
 to	
 the	
 destination	
 thanks	
 to	
 the	
 DAO	
 messages	
 that	

were	
 received,	
 and	
 “source-­‐routes”	
 the	
 packet	
 to	
 its	
 destination	
 using	
 a	
 specific	

routing	
 header	
 for	
 IPv6	
 (called	
 RH4)	
 [12].	

	

It	
 should	
 be	
 mentioned	
 that	
 there	
 is	
 a	
 trade-­‐off	
 between	
 storing	
 and	
 non-­‐storing	

mode	
 of	
 operation	
 in	
 terms	
 of	
 computing	
 resources	
 (memory,	
 CPU,	
 power	
 etc).	

For	
 example,	
 storing	
 mode	
 requires	
 routing	
 tables	
 and	
 uses	
 up	
 memory	
 while	

non-­‐storing	
 mode,	
 though	
 not	
 requiring	
 routing	
 tables,	
 causes	
 packets	
 to	

increase	
 in	
 size	
 which	
 uses	
 more	
 power	
 and	
 bandwidth.	

	

Loop Avoidance and Loop Detection
	

Loop detection and avoidance is one of the differentiating aspects of a routing
protocol for smart object networks like RPL compared to traditional networks. In
traditional networks temporary loops are formed due to topology changes and lack of
synchronization between nodes. These loops need to be detected as quickly as
possible to avoid packet drops (due to TTL expiry) and link congestion, therefore

various optimization mechanisms have been proposed and put in place to avoid such
micro-loops.

Contrasting the high data rates in traditional networks are the low data rates in LLNs.
In LLNs the effect of temporary loops may have limited impact on low data rates and
it is recommended to under-react, as the conditions leading to loops could be
transient. Also, over-reacting to such conditions in LLNs could lead to further routing
oscillations and energy consumption in nodes to process the control packets. Thus,
RPL does not guarantee the absence of loops but rather tries to avoid them and
specifies mechanisms to detect loops via data path validation.

RPL specifies two rules for loop avoidance. These rules rely on the ‘rank’ property of
the nodes. Firstly, as part of the “max_depth rule”, a node is not allowed to select as a
parent a neighboring node that is deeper (ie whose rank is greater) such that the node
will end up advertising a value node-rank+max_depth, where max_depth is a
configurable value specified at the root. Secondly, a node is not allowed to be
‘greedy’ and attempt to move deeper in the graph to increase the number of parents.

Loops in LLNs are unavoidable hence there is a need for detecting these loops in
addition to loop avoidance rules. One way to achieve this is by setting bits in the RPL
routing header (RH4 [12]) and processing these bits as part of data-path validation.
The idea is to set and process these bits as the packet moves up and down along the
edges of the graph and check for anomalies in the values to detect loops. For example,
loops in the DAO path can be detected by using a ‘down’ bit in the RPL routing
header [12]. When a node sends a packet destined to one of its children in the ‘down’
direction, it sets the ‘down’ bit and forwards the packet to the next hop node. Upon
receiving a packet with the down bit set, if the routing table lookup of the receiving
node indicates that the packet has to be forwarded in the ‘up’ direction this indicates
an inconsistency or a loop and packet needs to be discarded (a local repair needs to be
triggered). Similar other optimizations are possible.

Global and Local Repair
	

Repair is a key feature for any routing protocol and refers to the ability to repair the
routing topology when failures occur. Similarly, RPL supports graph repair
mechanisms in case of link and node failures. Care must be taken to avoid triggering a
re-build in transient conditions as discussed previously. RPL specifies two techniques,
which are complimentary in nature and actions (known as local and global repair).
When a link or neighboring node failure is detected to be unavailable and the node
has no other router in the ‘up’ direction, a local repair is triggered to quickly find an
alternate parent/path. This is a local repair with no global implication on the entire
graph. As local repairs take place the graph may start to diverge from its optimum
shape, at which point it might be necessary to rebuilding the graph (DODAG) thanks
to a complementary mechanism called the “Global Repair”.

Global repair is a repair mechanism that rebuilds the graph from scratch. It is an
optimization technique but it has a cost. The global repair can be triggered only from
the root and has a cost of additional control traffic in the network. Each node in the
graph will rerun the objective function for preferred parent selection.

Timer Management
	

This is another area where RPL differs from other routing protocols that operate in
less-constrained environments. In LLNs, especially when the network is made of
devices that must save energy, it is imperative to limit the control plane traffic (RPL)
in the network. Most routing protocols use periodic keepalives (routing protocol
keepalive, protocols such as BFD) to maintain routing adjacency and to keep routing
tables up to date. But this would be costly in LLNs where resources are scarce. RPL
uses an adaptive timer mechanism called the “trickle timer”. This mechanism controls
the sending rate of DIO messages. The algorithm treats building of graphs as a
consistency problem and makes use of trickle timers to decide when to multicast DIO
messages. Certain events are treated as inconsistencies in the network. For example,
when a node detects a loop in the network it is considered as an inconsistency in the
network, or, when a node joins the network or moves within the network is
considered an inconsistency in the network. Loops are detected using new bits
defined in an extended IPv6 header. The interval of the trickle timer increases as the
network stabilizes which results in fewer DIO messages being sent in the network. As
inconsistencies are detected, the nodes reset the trickle timer and send DIOs more
often. Using this mechanism the frequency of the DIO messages depends on the
stability of the network and the frequency is increased in the vicinity where the
inconsistency is detected. In other words, as the network becomes stable, the number
of RPL messages decreases. When an inconsistency is detected (such as a loop or a
change in the DODAG parameters) the timers are reset to quickly fix the issue (this
can be observed in Figure 4 with the “Waves” of control traffic).

Figure 4 – RPL Control plane Traffic

One of the main advantages of the trickle timer implementation is that it does not
require complex code and is fairly easy to implement. This is especially important
given the constrained devices in operation.

4. RPL and 6LoWPAN

In 2005, the IETF chartered the IPv6 over Low Power, Wireless Networks
(6LoWPAN) working group to standardize adaptations of IPv6 over mesh networks
composed of low-power, wireless links. Link-layer datagram fragmentation and IPv6
header compression were defined to efficiently transport IPv6 datagrams within IEEE
802.15.4 frames. New mechanisms were also defined to perform IPv6 ND operations
such as link-layer address resolution and duplicate address detection. While
6LoWPAN was originally chartered for IEEE 802.15.4, the working group’s care to
limit tight bindings to 802.15.4 allowed other link technologies (e.g. Wavenis and
PLC) to utilize the same 6LoWPAN mechanisms. As such, the term “6LoWPAN
networks” is often generalized to refer to mesh networks built on low-power and lossy
links that utilize 6LoWPAN mechanisms.

A long-standing issue in adapting IPv6 to any link technology is whether or not to
support a single broadcast domain, where all communication is transitive within the
subnet (if A can send to B and B can send to C, then A can send to C) and any
interface can reach any number of interfaces within the subnet by sending a single IP
datagram. Emulating a single broadcast domain within a 6LoWPAN network
requires link-layer routing and forwarding, often referred to as “mesh-under” since
the multi-hop mesh topology is abstracted away underneath IPv6 to appear as a fully
connected network. However, the IETF has not specified any mesh-under routing
protocols for use in 6LoWPAN networks.

By contrast, the IETF has specified a “route-over” architecture (RPL as explained in
this document) where routing and forwarding is implemented at the network layer,
according to the IP architecture. Where a mesh-under architecture defines the extent
of an IPv6 link as all nodes within the same multihop mesh, a route-over architecture
defines the extent of an IPv6 link as immediate neighbors reachable within a single
link transmission (e.g. radio range on wireless links). In other words, a route-over
6LoWPAN network would be composed of multiple overlapping link-local scopes,
each node defining its own link-local scope that includes its immediate link
neighbors.

To summarize: A mesh-under approach places routing functions in the link layer to
emulate a single broadcast domain where all devices appear as immediate neighbors
to the network layer. In contrast, a route-over approach places all routing functions at
the network layer.

An expected use case for RPL is to support 6LoWPAN networks in a route-over
configuration. With RPL, 6LoWPAN routers operate as IPv6 routers and form routes
using RPL. Border routers that connect 6LoWPAN networks to other IP networks
will typically operate as RPL DODAG roots. Nodes then utilize RPL to form one or
more routing topologies so that they can forward IPv6 datagrams to their destination.

A route-over 6LoWPAN network typically does not configure any on-link prefixes
due variable connectivity and neighbor relationships that is common within LLNs.
As such, 6LoWPAN hosts must explicitly indicate their presence to neighboring
attachment routers in one of two ways. In the first option, a host can operate a subset
of the RPL protocol, by receiving DIO messages, choosing preferred parents based on
advertised metrics and constraints, and communicating DAO messages to the root.
The RPL-aware host does not transmit DIO messages because it is not providing any
routing functionality.

Alternatively, a 6LoWPAN host may be routing-protocol agnostic by using the
6lowpan-nd protocol to discover neighboring routers, choose attachment routers, and
notify one or more of those routers of their existence.

The interaction with Neighbor Discovery and RPL is important to take into account.
This is especially true in a LoWPAN, where 6LoWPAN ND optimizations [11]
change the interaction model and the LoWPAN network architecture demands more
from ND in a route-over topology.

Hosts play a special role in LoWPANs, and the ND bootstrapping process allows
them to attach to a LoWPAN without the need to participate in routing, thus reducing
complexity. 6LRs (6lowpan Routers), which act either as RPL routers or leaf nodes,
respond to Router Solicitation (RS) messages from 6LNs (6lowpan Nodes - other
hosts or routers) with Router Advertisement (RA) messages. RAs contain the needed
prefix and context information for a node to discover the LoWPAN and autoconfigure
its addresses. In a LoWPAN, neighbor information is maintained by having nodes
register with their default next-hop routers. This is done using a unicast Neighbor
Solicitation/Neighbor Advertisement (NS/NA) exchange carrying an Address
Registration Option. These exchanges are shown in Figure 5. 6LRs use ND in the
same manner to bootstrap onto the network with a neighbor router, and then to
register with other routers.

	

Figure 5 – Basic ND message exchanges in a LoWPAN.

A LoWPAN functions properly only when its prefix information and the set of
compression contexts (if any), used for further compressing addresses, is in sync for
all nodes in the LoWPAN. On an IPv6 link this is trivial as all nodes on the link can
receive RAs from the same router. In a route-over LoWPAN the link is non-transitive,
thus every 6LR in the LoWPAN needs a fresh set of prefix and context information.
This information is then included in the RA sent in response to an RS from a
neighboring node. This is achieved in a LoWPAN by using the multihop prefix
distribution mechanism of [11]. Here the 6LBR originates the set of prefix and
context information for the LoWPAN. This set of prefix and context information is
provided with the 6LBRs IPv6 address and a version number. As RS/RA exchanges
are made by 6LRs in the network, this information is slowly distributed throughout
the LoWPAN. By following a simple set of rules, the 6LBR is able to update the set
of information while keeping all nodes in the LoWPAN in sync.

In turn, RPL routers serving as attachment routers must inject host routes into the
RPL domain by including information about those hosts that have registered via
6lowpan-nd in DAO messages.

As you may have noticed, applying RPL to 6LoWPAN networks does not require any
considerations that are different from any other link technology. From a technical
perspective, it allows the formation of a single cohesive routing graph that does not
suffer from unintended cross-protocol or cross-layer interactions. From an
operational perspective, running a single routing protocol across different link
technologies reduces operator burden in having to understand and manage a routing
protocol for each specific link technology. Within a RPL domain, one or more RPL
routers are configured to serve as roots and initiate the graph building process. Other
RPL routers participate in the iterative graph building process and generate DAOs
toward the root to advertise reachable prefixes within their subgraphs. In storing
mode, RPL routers maintain state for prefixes within their subgraph.

5. An example using RPL over a Low-Rate Low-Power Powerline
Communication (LR-LP-PLC) for Home area Network.

Because RPL aims to offer a routing protocol for LLNs, it is by definition not
restricted to any specific link layer. According to the initial requirements, RPL is a
layer 3 routing protocol not tied to a specific link layer technology. As presented in
the “Low Power Link Layer” white Paper [5], link layers technologies other than
IEEE 802.15.4 may fit with the LLN definition, and PLC is a particularly good
candidate.

The aim of this section is simply to provide an example of RPL operation using a
PLC link layer for a home area network. Needless to say that LLN may also use low
power wireless links or a mix of link layers too.

Similarly to low power wireless link layers, PLC links suffer from variable link
quality and are not designed to be a broadcast-based technology like Ethernet.

Basically, limitations come from:

• The strong absorption of the media itself, not designed to support high
frequency transmissions.

• Appliance’s power supply presenting low impedance at high frequencies thus
impacting significantly signal propagation.

• EMC regulation and power consumption that limit emission levels and
coverage.

Compared to regular PLC systems, LR-LP-PLC is a particular implementation
(currently being standardized within ETSI), dedicated to command & control or M2M
applications, designed to optimize power consumption including to the detriment of
range and data rate. Some LR-LP-PLC implementations have been shown to consume
similar power consumption levels as wireless radio systems like 6LowPan nodes.

Figure 6 – Packet Delivery Ratio (PDR) variation over time on several LR-LP-
PLC links

As shown in figure 6 in comparison with figure 1, the PLC link may be subject to as
many disturbances as a wireless link, because every electrical device may inject noise
and/or absorb the signal. Considering the number of electrical devices in an electrical
network like a multi-dwelling unit and their varying electrical behaviors that disturb
the communication, the routing mechanism over PLC networks has to cope with very
lossy links. Furthermore, these noise/fading generators create asymmetric links that
add routing complexity.

As explained in the previous sections, RPL computes multi-hop path according to a
given metric. This enables the choice of the metric-optimum path to a particular node.
RPL can also help in fading issues with packet forwarding, enabling the repeating of
the message along the path. The use of the Expected Transmission Count (ETX)
metric in RPL networks over LR-LP-PLC will help the RPL nodes to use more
reliable paths to reach the root.

Note that the link quality measurement may depend on the packet size, larger size
packets taking more time to transmit and therefore more exposed to disturbances.

Considering LR-LP-PLC technologies as presented in [5], experience tells us that all
nodes of a single network cannot be reached with a single hop. Due to multiple and
varying disturbances on the link, LR-LP-PLC networks may take advantage of mesh
topologies to provide path diversity and RPL recovery mechanisms. RPL address
these challenges by building a graph (DODAG), and maintaining a topology
according to a set of Constraints/Metrics computed by low layers. An experiment of a
RPL network over an LR-LP-PLC implementation subject to real life activity
(multiphase in a multi-dwelling environment) with the ETX metric, achieved a 97%
average transmission success instead of less then 50% without RPL (note that this is
based on a real-life Watteco experiment and may vary with the network).

Because LR-LP-PLC links have limited throughput, the under-reactive behavior of
RPL helps to maintain a reliable topology with keeping the traffic control overload
very low. Being over-reactive would result in a global repair for every electrical event
that may change the network topology.

Because the electrical network behavior cannot be known a priori, and because there
is no strong relation between wiring and logical connections, self-configuration is the
key to build a routing topology.

Figure 7 – Example of a local repair in the RPL routing topology after an
electrical perturbation, affecting link to node B.

Figure 7 highlights the difference between physical and logical topologies over LR-
LP-PLC. This makes auto configuration a mandatory feature. The local repair
mechanism in RPL provides full connectivity in the PLC network thanks to multi-
hops topologies.

According to its rooted architecture, RPL enables multi physical networking. For
example, the DODAG root may be used to connect the LLN to the public Internet,
regardless of the media employed. For instance, a root of a LR-LP-PLC network (thus
usually main-powered) running RPL may have an 802.15.4 interface and an Ethernet
interface to the Internet.
	

	

6. RPL and Security

Security is critical in smart object networks but implementation complexity and size
is a core concern for LLNs such that it may be economically or physically impossible
to include sophisticated security provisions in a RPL implementation. Furthermore,
many deployments can utilize link-layer or other security mechanisms to meet their
security requirements without requiring the use of security in RPL. Therefore, the
security features in RPL are available as optional extensions.
	

When made available, RPL nodes can operate in three security modes. In the first
mode, called "unsecured," RPL control messages are sent without any additional
security mechanisms. Unsecured mode implies that the RPL network could be using
other security primitives (e.g. link-layer security) to meet application security
requirements. In the second mode, called "pre-installed," nodes joining a RPL
instance have pre-installed keys that enable them to process and generate secured

RPL messages. In the third mode, called "authenticated", nodes can join as leaf nodes
using pre-installed keys as in pre-installed mode, or join as a forwarding node by
obtaining a key from an authentication authority.

Each RPL message has a secure variant. The level of security (32-bit and 64-bit MAC
and ENC-MAC modes are supported) and the algorithms (CCM and AES-128 are
supported) in use are indicated in the protocol messages. The secure variants provide
integrity and replay protection and confidentiality and delay protection as an added
option.

7. Interoperability Testing
	

RPL has been implemented by a number of vendors during the design phase and RPL
has highly benefited from return on experience as it was implemented. Furthermore
both the IPSO and Zigbee/IP alliances organized several interoperability tests that
were successful. Zigbee has tested the “non storing” mode of operation of RPL.

8. Simulation Results
	

In order to get a sense of real-life deployments several vendors are fast adopting the
routing protocol specified. In addition, simulations have been done on various aspects
of the algorithm to provide useful data and aid in design choices. For example, in one
set of simulation results, a discrete event simulator (see [14]) has been developed
based on OMNET++ and the Castalia module for wireless sensor networks within
OMNET++. Hundreds of link traces were gathered to create a link failure model
database of lossy links. Each link trace provided the PDR at different times. For some
links received signal strength indicator (RSSI) data was available and PDR values
were derived from it due to their implicit correlation.

The simulator reads the database and selects values at random thus providing fairly
realistic results. When a packet is to be transmitted by a node, the PDR of the link is
read from the database and the packet is dropped with a probability of 1-PDR. In this
simulation the data traffic was segregated with 25% of the traffic going in the up
direction to the root and 75% of the traffic going in the down direction.

Several characteristics were studied: control traffic, routing table size, path efficiency
and failure handling. The following observations were made for each:

Control traffic: The control traffic is negligible compared to the data traffic and as the
DODAG stabilizes the control traffic decreases significantly.
Routing Table Size: Observations were made for the number of routing entries in the
absence of route aggregation. It was observed that number of routing entries increase
as we get closer to the root of the DODAG.
Path Efficiency: Observation was made on the optimality of path for P2P traffic. The
idea was to find out how sub-optimal the path computed by the algorithm for P2P
traffic compared to an ideal routing protocol. It was observed that although the
algorithm provides a fairly good quality path additional mechanism would be needed
to further improve it.
Failure Handling: This observation provided critical information as it provides the
protocol’s capability to compute an alternate path in the case of node or link failure.

Observations were made for local and global repair scenarios to observe the amount
of time during which no path was available. It was observed that in 80% of the cases
the period of time without connectivity was 20sec during local repair. Two
observations were made for global repair frequency: 1hour and 1minute. These results
were observed on specific networks for a given RPL parameters settings. It was
observed that as the frequency interval is reduced the failure time is also reduced at
the cost of increase in control traffic. It was also observed that if the global repair
interval was increased to one hour and the local repair was activated the failure time
was reduced significantly while the control traffic increased slightly, thus providing
excellent convergence time without affecting the overall scalability (see [14] for
further details).

9. References
	

[1] “Interconnecting Smart Object with IP: The next Internet” (The Morgan
Kaufmann Series in Networking) by JP Vasseur and Adam Dunkels,
www.thenextinternet.org, June 2010.

[2] IPSO White Paper #1 – “A survey of several low power Link layers for
IP Smart Objects” by JP Vasseur, Adam Dunkels.

[3] “6LoWPAN: The Wireless Embedded Internet” (Wiley Series on
Communications Networking & Distributed Systems)” by Zach Shelby and Carsten
Bormann.

[4] IPSO White Paper #3 – Lightweight IPv6 Stacks for Smart Objects: the
Experience of Three Independent and Interoperable Implementations by Julien
Abeillé, Mathilde Durvy, Jonathan Hui, Stephen Dawson-Haggerty.

[5] IPSO White Paper #6 – “A survey of several low power Link layers for
IP Smart Objects” by JP Vasseur, Paul Bertrand, Bernard Aboussouan, Eric Gnoske,
Kris Pister, Roland Acra and Allen Huotori.

[6] RPL: IPv6 Routing Protocol for Low power and Lossy Networks -
http://tools.ietf.org/html/draft-ietf-roll-rpl-19	

[7] Routing Metrics used for Path Calculation in Low Power and Lossy Networks -
http://tools.ietf.org/html/draft-ietf-roll-routing-metrics

[8] Terminology in Low power And Lossy Networks - http://tools.ietf.org/html/draft-
ietf-roll-terminology	

	

[9] “Transmission of IPv6 Packets over IEEE 802.15.4 Networks”, by G.
Montenegro, N. Kushalnagar, J. Hui and D. Culler, IETF RFC4944, Sept 2007.
	

[10] Compression Format for IPv6 Datagrams in 6LoWPAN Networks -
http://tools.ietf.org/html/draft-ietf-6lowpan-hc

[11] Neighbor Discovery Optimization for Low-power and Lossy Networks -
http://tools.ietf.org/html/draft-ietf-6lowpan-nd

[12] An IPv6 Routing Header for Source Routes with RPL -
http://tools.ietf.org/html/draft-ietf-6man-rpl-routing-header

[13] Reactive Discovery of Point-to-Point Routes in Low Power and Lossy Networks
- http://tools.ietf.org/html/draft-ietf-roll-p2p-rpl

[14] Performance Evaluation of Routing Protocol for Low Power and Lossy Networks
(RPL) draft-tripathi-roll-rpl-simulation-06

