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1. Introduction: the unique routing requirements of IP smart object 
networks 
 
IP smart object networks are undoubtedly one of the key components of the next 
wave of the Internet, with an endless number of new opportunities and applications 
thanks to newly designed IP based protocols (see [1], [2] and [3]). 
 
Still such networks also present a number of technical challenges that have been 
explored in various IPSO white papers. The aim of this white paper is to exclusively 
focus on the routing aspects of IP Smart Object Networks.  
 
Such technical challenges include issues related to power consumption, small form 
factors and communication challenges (low speed, high error rates, …) used to form 
networks. The challenges are further complicated as there is interdependence between 
the issues. For example, the level of communication within the smart objects 
networks impacts the power consumption in the smart object. Also, the network 
protocol design should be cognizant of the power consumption and how much data to 
send. Additional factors such as cost, available power and form factor of the device 
limits the amount of computing resources that can be put in the smart object. For 
example, a typical off-the-shelf available smart object would have only tens of 
kilobytes of RAM/flash with small micro-controllers/processors. Thus the software on 
the smart objects must not only be power-efficient but must be able to run in a small 
memory footprint device. 
 
Smart object networks are potentially very large scale consisting of potentially 
(hundreds of) thousands of nodes often operating in harsh and remote environments. 
Individual networks built with thousands of smart objects are common. Data 
collection is typically sampled less frequently but the reporting, collection and 
analysis of this data leads to scaling issues as the network is designed to work for 
years. Note also that such nodes are usually unattended and must support some forms 
of auto-configuration and management. 
 
Another factor related to power consumption is the communication medium of the 
smart object network.  In order to optimize on the power consumption these devices 
normally use media operating on low power communication standards. These could 
include low-power wireless communication as well as power line communication 
protocols where communication happens over the same set of media that carries 
electricity. It is worth noting some low power link layers designed for LLNs that 
are working with RPL: IEEE 802.15.4, Wavenis, IEEE P1901.2, ITU G.hnem.... (see 
[4]). The communication over this type of media is unreliable as it is uncertain if the 
intended device received a message sent by another device. The message could have 
been disrupted partially or completely due to physical obstruction in the ‘line-of-
sight’ or due to various sources of noise and interference.  The unreliable nature of the 
communications in the context of smart object networks is referred to as being ‘lossy’ 
and this is one of the inherent characteristics, which should be taken into account 
during any software or communication/network protocol design. Such networks are 
also referred to as Low power and Lossy Networks (LLNs). 



 
Routing is the process by which the network determines what path(s) the messages 
should take through the network. Routing in LLN has to be cognizant of the above 
issues and treat this as input requirements for design. The routing protocol design in 
this type of network should be sensitive to how much data a network can handle, the 
speed and the devices’ capabilities. For example, in smart object networks consisting 
of battery-powered nodes, the act of communication consumes energy and nodes that 
communicate more frequently drain their energy faster.  
 
LLNs are known to be lossy, as we have seen. This “lossyness” may be transient and 
unpredictable. Thus the routing protocol must be robust and be prepared to deal with 
these network characteristics. In traditional networks any loss of connectivity triggers 
a desire to quickly re-converge and find alternate routing paths. This is desirable so 
that data traffic is re-routed around network failures as quickly as possible and with as 
little loss of data. To that end, a number of techniques such as Fast Reroute for 
IP/MPLS have been designed for link state protocols such as OSPF or ISIS. This 
action is seen as overkill in LLNs due to the lossyness being transient and would 
unavoidably lead to lack of stability and unacceptable control plane overhead.  A 
preferred model should be to ‘under-react’ to smooth over the transient loss of 
connectivity and have a confidence-monitoring model before triggering a full re-
convergence. 
 
Furthermore, routing in LLNs should be able to self manage to a large extent and be 
able to heal itself without requiring manual intervention. For example, it is not 
possible for a system administrator to assign an address manually or be able to enter 
passwords for accessing the network. In addition to large addressing spaces provided 
by IPv6, such auto-configuration capability (known as IPv6 stateless auto-
configuration) make IPv6 an ideal candidate for LLNs. 
 
Smart object networks operate on a variety of link types having variable quality, 
which is unpredictable due to various surrounding environment factors. Unlike 
traditional links that have a low bit-error rate (BER) the packet delivery ratios (PDR) 
in LLNs show wide variations. This is true for not only wireless links but PLC links 
as well which are impacted by impedance variations, interferences etc. Figure 1 
shows a typical Packet Delivery Ratio over a low power wireless link. 
 



 
 

Figure 1 – PDR Variation over time on IEEE 802.15.4 
 
The link quality has direct implication on routing protocol design with respect to 
convergence time. While traditional routing protocols are designed to minimize the 
convergence time due to the voice and video traffic requirements a similar approach 
for LLN would potentially lead to routing instabilities, various oscillations and 
routing loops. Furthermore, smart objects do not send a large amount of traffic unlike 
voice and video traffic on high-speed IP networks. In these environments, it is a 
reasonable expectation that during transient instabilities the traffic is locally 
redirected to an alternate next hop without triggering a global re-convergence.  
 
Another aspect of these networks is the dynamic nature of the metrics. Traditional 
routing protocols have experimented and avoided the use of dynamic metrics due to 
risk of route oscillations and network instability. But in LLNs, node and link metrics 
do change over a period of time (link quality going down due to interference, CPU 
overloading, node switching from line power to battery power, etc) and the routing 
protocol should be able to adapt to it. 

2. RPL: an open routing protocol for IP smart object networks 
standardized by the IETF 

The Internet Engineering Task Force (IETF) quickly recognized the need to form a 
new Working Group to standardize an IPv6-based routing solution for IP smart object 
networks, which led to the formation of a new Working Group called ROLL (Routing 
Over Low power and Lossy) networks in 2008: http://www.ietf.org/html.charters/roll-
charter.html. 
 
The ROLL Working Group conducted a detailed analysis of the routing requirements 
focusing on several applications: urban networks including smart grid, industrial 



automation, home and building automation. This set of applications has been 
recognized to be sufficiently wide to cover most of the applications of the Internet of 
Things. The objective of the WG was to design a routing protocol for LLNs, 
supporting a variety of link layers, sharing the common characteristics of being low 
bandwidth, lossy and low power. Thus the routing protocol should make no specific 
assessment on the link layer, which could either be wireless such as IEEE 802.15.4, 
IEEE 802.15.4g, (low power) Wifi or Powerline Communication (PLC) using IEEE 
802.15.4 such as IEEE P1901.2..  
 
The result of this Working Group was the “Ripple” routing protocol (RPL) 
specification, along with supporting specifications on routing metrics, objective 
functions and security. The rest of this document gives an introduction to RPL and 
these related specifications. 
 
Note that RPL operates at the IP layer according to the IP architecture, and thus 
allows for routing across multiple types of link layers, in contrast with other form of 
“routing” operating at lower layer (e.g. link layers). 
 
 
3. An overview of RPL mode of operation 
 
RPL is a Distance Vector IPv6 routing protocol for LLNs that specifies how to build a 
Destination Oriented Directed Acyclic Graph (DODAG sometimes referred to as a 
graph in the rest of this document) using an objective function and a set of 
metrics/constraints. The objective function operates on a combination of metrics and 
constraints to compute the ‘best’ path. There could be several objective functions in 
operation on the same node and mesh network because deployments vary greatly with 
different objectives and a single mesh network may need to carry traffic with very 
different requirements of path quality. For example, several DODAGs may be used 
with the objective to (1) ‘Find paths with best ETX [Expected Transmissions] values 
(metric) and avoid non-encrypted links (constraint)’ or (2) ‘Find the best path in terms 
of latency (metric) while avoiding battery-operated nodes (constraint)’. The objective 
function does not necessarily specify the metric/constraints but does dictate some 
rules to form the DODAG (for example, the number of parents, back-up parents, use 
of load-balancing, …). 
 
The graph built by RPL is a logical routing topology built over a physical network to 
meet a specific criteria and the network administrator may decide to have multiple 
routing topologies (graphs) active at the same time used to carry traffic with different 
set of requirements. A node in the network can participate and join one or more 
graphs (in this case we call them “RPL instances”) and mark the traffic according to 
the graph characteristic to support QoS aware and constraint based routing. The 
marked traffic flows up and down along the edges of the specific graph.  

DODAG Building Process 
	
  
The graph building process starts at the root or LBR (LowPAN Border Router), which 
is configured by the system administrator. There could be multiple roots configured in 
the system. The RPL routing protocol specifies a set of new ICMPv6 control 



messages to exchange graph related information. These messages are called DIS 
(DODAG Information Solicitation), DIO (DODAG Information Object) and DAO 
(DODAG Destination Advertisement Object).  
 
The root starts advertising the information about the graph using the DIO message. 
The nodes in the listening vicinity (neighboring nodes) of the root will receive and 
process DIO message potentially from multiple nodes and makes a decision based on 
certain rules (according to the objective function, DAG characteristics, advertised 
path cost and potentially local policy) whether to join the graph or not. Once the node 
has joined a graph it has a route toward the graph (DODAG) root. The graph root is 
termed as the ‘parent’ of the node. The node computes the ‘rank’ of itself within the 
graph, which indicates the “coordinates” of the node in the graph hierarchy. If 
configured to act as a router, it starts advertising the graph information with the new 
information to its neighboring peers. If the node is a “leaf node”, it simply joins the 
graph and does not send any DIO message. The neighboring peers will repeat this 
process and do parent selection, route addition and graph information advertisement 
using DIO messages. This rippling effect builds the graph edges out from the root to 
the leaf nodes where the process terminates. In this formation each node of the graph 
has a routing entry towards its parent (or multiple parents depending on the objective 
function) in a hop-by-hop fashion and the leaf nodes can send a data packet all the 
way to root of the graph by just forwarding the packet to its immediate parent. This 
model represents a MP2P (Multipoint-to-point) forwarding model where each node of 
the graph has reach-ability toward the graph root. This is also referred to as 
UPWARD routing. Each node in the graph has a ‘rank’ that is relative and represents 
an increasing coordinate of the relative position of the node with respect to the root in 
graph topology. The notion of “rank” is used by RPL for various purposes including 
loop avoidance. The MP2P flow of traffic is called the ‘up’ direction in the DODAG. 
The various steps of the graph building process are represented in Figure 2. 
 
 
 

 
Figure 2 – 

the RPL 

DODAG 
building 

process 
 



The DIS message is used by the nodes to proactively solicit graph information (via 
DIO) from the neighboring nodes should it become active in a stable graph 
environment using the ‘poll’ or ‘pull’ model of retrieving graph information or in 
other conditions.  
 
Similar to MP2P or ‘up’ direction of traffic, which flows from the leaf towards the 
root there is a need for traffic to flow in the opposite or ‘down’ direction. This traffic 
may originate from outside the LLN network, at the root or at any intermediate nodes 
and destined to a (leaf) node. This requires a routing state to be built at every node 
and a mechanism to populate these routes. This is accomplished by the DAO 
(Destination Advertisement Object) message. DAO messages are used to advertise 
prefix reachability towards the leaf nodes in support of the ‘down’ traffic. These 
messages carry prefix information, valid lifetime and other information about the 
distance of the prefix. As each node joins the graph it will send DAO message to its 
parent set. Alternately, a node or root can poll the sub-dag for DAO message through 
an indication in the DIO message. As each node receives the DAO message, it 
processes the prefix information and adds a routing entry in the routing table. It 
optionally aggregates the prefix information received from various nodes in the sub-
dag and sends a DAO message to its parent set. This process continues until the prefix 
information reaches the root and a complete path to the prefix is setup. Note that this 
mode is called the “storing” mode of operation where intermediate nodes have 
available memory to store routing tables. RPL also supports another mode called 
“non-storing” mode where intermediate node do not store any routes (discussed later 
in this document). 
 
RPL also supports point-to-point (P2P) communication from any node to any other 
node in the graph. When a node sends a packet to another node within the LLN 
network, the packet travels ‘up’ to a common ancestor at which point it is forwarded 
in the ‘down’ direction to the destination. A technique for further optimizing (when 
necessary) P2P communication between nodes is being explored by the ROLL WG in 
[13]. 
 
RPL also provides the ability to perform multi-topology routing (MTR) thanks to the 
concept of a DODAG instance identified by an instance-id. The idea is to construct 
and identify multiple graphs (DODAGs) over the same physical topology. This 
provides a way to provide paths based on different optimization objectives as 
specified by the objective function and the routing/constraint metrics. A node can 
only join a single graph within an instance-id but can be associated with several 
instance-ids simultaneously. This is illustrated in Figure 3. This is helpful to build 
multiple routing topologies on a physical mesh network. For example, non-critical 
traffic should follow a path avoiding battery-powered nodes whereas more critical 
traffic should follow a path of minimum latency.  



 
Figure 3 – Example of Multi-topology-routing using the RPL routing protocol 

 
Another class of traffic can use paths leading to a data aggregator while other traffic 
should avoid nodes not supporting link encryption. So routing decisions are more 
complex using a variety of metrics and constraints, which could change dynamically. 
 
Within an instance, the routing topology can be segregated among multiple graphs for 
various reasons such as providing greater scalability. A node can only be associated 
with a single graph within a specific instance but it can join multiple routing 
instances. However, the routing protocol allows the movement (or ‘jump’) of a node 
to a different graph within the framework of some fundamental rules. As the node 
moves to another graph it has to abandon its current parent set, re-compute the new 
rank based on its new position and do new parent selection. 
 
Support of dynamic routing metrics and constraints 
 
Metrics and constraints: Routing for an LLN requires a sophisticated routing metric 
strategy driven by type of data traffic. A metric is a scalar quantity used as input for 
best path selection. A constraint, on the other hand, is used as an additional criterion 
to prune links or nodes that do not meet the set of constraints. Metrics and constraints 
can be node or link based. Examples of node level metrics are node state attribute, 
node energy state etc., while link level metrics can be latency, reliability, link color 
etc. The metrics and constraints can be dynamic and the routing protocol “smoothes” 
and reacts to the changes in metric and constraint values (see [7]). Additionally, 
metrics can be recorded or accumulated.  Recorded metrics carry distinct values of 
each path while accumulated metric is an aggregation of values along the path. 



Storing and Non-storing nodes 
	
  
Each node at the edge of a graph sends a DAO message to allow routing state to be 
built for traffic to flow in the ‘down’ direction known as downward routing. This 
means that each node in the network would have to store the prefix information from 
the DAO messages received from the sub-dag nodes. This has memory implications 
and routing table scalability at each node since each prefix entry translates to a 
routing entry in the routing table (or less in the presence of routing aggregation). 
Some nodes in the network may have significant constraints regarding memory and 
may be incapable of storing routing entries for downward routes. These nodes are 
classified as non-storing nodes while nodes capable of storing routing information are 
called storing nodes. 
 
In non-storing mode, a node uses DAO messages to report its DAO to its parents all 
the way to the graph Root.  The graph Root uses the information received to piece 
together a downward route to a node by using DAO parent sets from each node in the 
route.  The nodes include the parent information in the ‘transit-info’ field of the DAO 
message.  Additionally, nodes can pack DAOs by sending a single DAO message 
with multiple prefix information.  Each prefix information can be associated with its 
own transit information. In this mode of operation it is expected that the root of the 
DODAG has the capability to store routing information while the nodes in the 
DODAG operate in non-storing mode. A mixed mode of operation is not allowed and 
all nodes in the graph have to operate in either storing or non-storing mode only.  
 
In the non-storing mode when the root receives a packet destined to a specific 
destination in a non-storing graph the root adds the pieced together information in the 
source routing header of the packet and forwards it to the next-hop child node in the 
network. Each intermediate node examines the information in the source routing 
header and forwards the packet to the next-hop child node. This forwarding process is 
repeated until the packet reaches the final destination.	
  So	
  for	
  example,	
  in	
  non-­‐storing	
  
mode,	
  when	
   a	
   node	
  A	
   sends	
   a	
   packet	
   to	
   a	
   node	
  B	
  within	
   the	
  RPL	
   domain,	
   the	
  
packet	
   first	
   follows	
   the	
   graph	
   up	
   to	
   the	
   root	
  where	
   the	
   routing	
   information	
   is	
  
stored.	
  At	
  this	
  point,	
  the	
  graph	
  root	
  inspects	
  the	
  destination,	
  consults	
  its	
  routing	
  
table	
  that	
  contains	
  the	
  path	
  to	
  the	
  destination	
  thanks	
  to	
  the	
  DAO	
  messages	
  that	
  
were	
  received,	
  and	
  “source-­‐routes”	
  the	
  packet	
  to	
  its	
  destination	
  using	
  a	
  specific	
  
routing	
  header	
  for	
  IPv6	
  (called	
  RH4)	
  [12].	
  
	
  
It	
  should	
  be	
  mentioned	
  that	
  there	
  is	
  a	
  trade-­‐off	
  between	
  storing	
  and	
  non-­‐storing	
  
mode	
  of	
  operation	
  in	
  terms	
  of	
  computing	
  resources	
  (memory,	
  CPU,	
  power	
  etc).	
  
For	
  example,	
  storing	
  mode	
  requires	
  routing	
  tables	
  and	
  uses	
  up	
  memory	
  while	
  
non-­‐storing	
  mode,	
  though	
  not	
  requiring	
  routing	
  tables,	
  causes	
  packets	
  to	
  
increase	
  in	
  size	
  which	
  uses	
  more	
  power	
  and	
  bandwidth.	
  
	
  
Loop Avoidance and Loop Detection 
	
  
Loop detection and avoidance is one of the differentiating aspects of a routing 
protocol for smart object networks like RPL compared to traditional networks. In 
traditional networks temporary loops are formed due to topology changes and lack of 
synchronization between nodes. These loops need to be detected as quickly as 
possible to avoid packet drops (due to TTL expiry) and link congestion, therefore 



various optimization mechanisms have been proposed and put in place to avoid such 
micro-loops.  
 
Contrasting the high data rates in traditional networks are the low data rates in LLNs. 
In LLNs the effect of temporary loops may have limited impact on low data rates and 
it is recommended to under-react, as the conditions leading to loops could be 
transient. Also, over-reacting to such conditions in LLNs could lead to further routing 
oscillations and energy consumption in nodes to process the control packets. Thus, 
RPL does not guarantee the absence of loops but rather tries to avoid them and 
specifies mechanisms to detect loops via data path validation. 
 
RPL specifies two rules for loop avoidance. These rules rely on the ‘rank’ property of 
the nodes. Firstly, as part of the “max_depth rule”, a node is not allowed to select as a 
parent a neighboring node that is deeper (ie whose rank is greater) such that the node 
will end up advertising a value node-rank+max_depth, where max_depth is a 
configurable value specified at the root. Secondly, a node is not allowed to be 
‘greedy’ and attempt to move deeper in the graph to increase the number of parents. 
 
Loops in LLNs are unavoidable hence there is a need for detecting these loops in 
addition to loop avoidance rules. One way to achieve this is by setting bits in the RPL 
routing header (RH4 [12]) and processing these bits as part of data-path validation. 
The idea is to set and process these bits as the packet moves up and down along the 
edges of the graph and check for anomalies in the values to detect loops. For example, 
loops in the DAO path can be detected by using a ‘down’ bit in the RPL routing 
header [12]. When a node sends a packet destined to one of its children in the ‘down’ 
direction, it sets the ‘down’ bit and forwards the packet to the next hop node. Upon 
receiving a packet with the down bit set, if the routing table lookup of the receiving 
node indicates that the packet has to be forwarded in the ‘up’ direction this indicates 
an inconsistency or a loop and packet needs to be discarded (a local repair needs to be 
triggered). Similar other optimizations are possible. 

Global and Local Repair 
	
  
Repair is a key feature for any routing protocol and refers to the ability to repair the 
routing topology when failures occur. Similarly, RPL supports graph repair 
mechanisms in case of link and node failures. Care must be taken to avoid triggering a 
re-build in transient conditions as discussed previously. RPL specifies two techniques, 
which are complimentary in nature and actions (known as local and global repair). 
When a link or neighboring node failure is detected to be unavailable and the node 
has no other router in the ‘up’ direction, a local repair is triggered to quickly find an 
alternate parent/path. This is a local repair with no global implication on the entire 
graph. As local repairs take place the graph may start to diverge from its optimum 
shape, at which point it might be necessary to rebuilding the graph (DODAG) thanks 
to a complementary mechanism called the “Global Repair”. 
 
Global repair is a repair mechanism that rebuilds the graph from scratch. It is an 
optimization technique but it has a cost. The global repair can be triggered only from 
the root and has a cost of additional control traffic in the network. Each node in the 
graph will rerun the objective function for preferred parent selection. 



Timer Management 
	
  
This is another area where RPL differs from other routing protocols that operate in 
less-constrained environments. In LLNs, especially when the network is made of 
devices that must save energy, it is imperative to limit the control plane traffic (RPL) 
in the network. Most routing protocols use periodic keepalives (routing protocol 
keepalive, protocols such as BFD) to maintain routing adjacency and to keep routing 
tables up to date. But this would be costly in LLNs where resources are scarce. RPL 
uses an adaptive timer mechanism called the “trickle timer”. This mechanism controls 
the sending rate of DIO messages. The algorithm treats building of graphs as a 
consistency problem and makes use of trickle timers to decide when to multicast DIO 
messages. Certain events are treated as inconsistencies in the network. For example, 
when a node detects a loop in the network it is considered as an inconsistency in the 
network, or, when a node joins the network or moves within the network is 
considered an inconsistency in the network.  Loops are detected using new bits 
defined in an extended IPv6 header. The interval of the trickle timer increases as the 
network stabilizes which results in fewer DIO messages being sent in the network. As 
inconsistencies are detected, the nodes reset the trickle timer and send DIOs more 
often. Using this mechanism the frequency of the DIO messages depends on the 
stability of the network and the frequency is increased in the vicinity where the 
inconsistency is detected. In other words, as the network becomes stable, the number 
of RPL messages decreases. When an inconsistency is detected (such as a loop or a 
change in the DODAG parameters) the timers are reset to quickly fix the issue (this 
can be observed in Figure 4 with the “Waves” of control traffic). 
 

 
 

Figure 4 – RPL Control plane Traffic 



 
One of the main advantages of the trickle timer implementation is that it does not 
require complex code and is fairly easy to implement. This is especially important 
given the constrained devices in operation. 
 

4. RPL and 6LoWPAN 
 
In 2005, the IETF chartered the IPv6 over Low Power, Wireless Networks 
(6LoWPAN) working group to standardize adaptations of IPv6 over mesh networks 
composed of low-power, wireless links.  Link-layer datagram fragmentation and IPv6 
header compression were defined to efficiently transport IPv6 datagrams within IEEE 
802.15.4 frames.  New mechanisms were also defined to perform IPv6 ND operations 
such as link-layer address resolution and duplicate address detection.  While 
6LoWPAN was originally chartered for IEEE 802.15.4, the working group’s care to 
limit tight bindings to 802.15.4 allowed other link technologies (e.g. Wavenis and 
PLC) to utilize the same 6LoWPAN mechanisms.  As such, the term “6LoWPAN 
networks” is often generalized to refer to mesh networks built on low-power and lossy 
links that utilize 6LoWPAN mechanisms. 
 
A long-standing issue in adapting IPv6 to any link technology is whether or not to 
support a single broadcast domain, where all communication is transitive within the 
subnet (if A can send to B and B can send to C, then A can send to C) and any 
interface can reach any number of interfaces within the subnet by sending a single IP 
datagram.  Emulating a single broadcast domain within a 6LoWPAN network 
requires link-layer routing and forwarding, often referred to as “mesh-under” since 
the multi-hop mesh topology is abstracted away underneath IPv6 to appear as a fully 
connected network.  However, the IETF has not specified any mesh-under routing 
protocols for use in 6LoWPAN networks. 
 
By contrast, the IETF has specified a “route-over” architecture (RPL as explained in 
this document) where routing and forwarding is implemented at the network layer, 
according to the IP architecture.  Where a mesh-under architecture defines the extent 
of an IPv6 link as all nodes within the same multihop mesh, a route-over architecture 
defines the extent of an IPv6 link as immediate neighbors reachable within a single 
link transmission (e.g. radio range on wireless links).  In other words, a route-over 
6LoWPAN network would be composed of multiple overlapping link-local scopes, 
each node defining its own link-local scope that includes its immediate link 
neighbors. 
 
To summarize: A mesh-under approach places routing functions in the link layer to 
emulate a single broadcast domain where all devices appear as immediate neighbors 
to the network layer.  In contrast, a route-over approach places all routing functions at 
the network layer.  
 
An expected use case for RPL is to support 6LoWPAN networks in a route-over 
configuration.  With RPL, 6LoWPAN routers operate as IPv6 routers and form routes 
using RPL.  Border routers that connect 6LoWPAN networks to other IP networks 
will typically operate as RPL DODAG roots.  Nodes then utilize RPL to form one or 
more routing topologies so that they can forward IPv6 datagrams to their destination. 



 
A route-over 6LoWPAN network typically does not configure any on-link prefixes 
due variable connectivity and neighbor relationships that is common within LLNs.  
As such, 6LoWPAN hosts must explicitly indicate their presence to neighboring 
attachment routers in one of two ways.  In the first option, a host can operate a subset 
of the RPL protocol, by receiving DIO messages, choosing preferred parents based on 
advertised metrics and constraints, and communicating DAO messages to the root.  
The RPL-aware host does not transmit DIO messages because it is not providing any 
routing functionality.   
 
Alternatively, a 6LoWPAN host may be routing-protocol agnostic by using the 
6lowpan-nd protocol to discover neighboring routers, choose attachment routers, and 
notify one or more of those routers of their existence.   
 
The interaction with Neighbor Discovery and RPL is important to take into account. 
This is especially true in a LoWPAN, where 6LoWPAN ND optimizations [11] 
change the interaction model and the LoWPAN network architecture demands more 
from ND in a route-over topology.  
 
Hosts play a special role in LoWPANs, and the ND bootstrapping process allows 
them to attach to a LoWPAN without the need to participate in routing, thus reducing 
complexity. 6LRs (6lowpan Routers), which act either as RPL routers or leaf nodes, 
respond to Router Solicitation (RS) messages from 6LNs (6lowpan Nodes - other 
hosts or routers) with Router Advertisement (RA) messages. RAs contain the needed 
prefix and context information for a node to discover the LoWPAN and autoconfigure 
its addresses. In a LoWPAN, neighbor information is maintained by having nodes 
register with their default next-hop routers. This is done using a unicast Neighbor 
Solicitation/Neighbor Advertisement (NS/NA) exchange carrying an Address 
Registration Option. These exchanges are shown in Figure 5. 6LRs use ND in the 
same manner to bootstrap onto the network with a neighbor router, and then to 
register with other routers.  
 



	
  
Figure 5 – Basic ND message exchanges in a LoWPAN. 

 
 
A LoWPAN functions properly only when its prefix information and the set of 
compression contexts (if any), used for further compressing addresses, is in sync for 
all nodes in the LoWPAN. On an IPv6 link this is trivial as all nodes on the link can 
receive RAs from the same router. In a route-over LoWPAN the link is non-transitive, 
thus every 6LR in the LoWPAN needs a fresh set of prefix and context information. 
This information is then included in the RA sent in response to an RS from a 
neighboring node. This is achieved in a LoWPAN by using the multihop prefix 
distribution mechanism of [11]. Here the 6LBR originates the set of prefix and 
context information for the LoWPAN. This set of prefix and context information is 
provided with the 6LBRs IPv6 address and a version number. As RS/RA exchanges 
are made by 6LRs in the network, this information is slowly distributed throughout 
the LoWPAN. By following a simple set of rules, the 6LBR is able to update the set 
of information while keeping all nodes in the LoWPAN in sync. 
 
In turn, RPL routers serving as attachment routers must inject host routes into the 
RPL domain by including information about those hosts that have registered via 
6lowpan-nd in DAO messages. 
 
As you may have noticed, applying RPL to 6LoWPAN networks does not require any 
considerations that are different from any other link technology.  From a technical 
perspective, it allows the formation of a single cohesive routing graph that does not 
suffer from unintended cross-protocol or cross-layer interactions.  From an 
operational perspective, running a single routing protocol across different link 
technologies reduces operator burden in having to understand and manage a routing 
protocol for each specific link technology.  Within a RPL domain, one or more RPL 
routers are configured to serve as roots and initiate the graph building process.  Other 
RPL routers participate in the iterative graph building process and generate DAOs 
toward the root to advertise reachable prefixes within their subgraphs.  In storing 
mode, RPL routers maintain state for prefixes within their subgraph. 



 
 

5. An example using RPL over a Low-Rate Low-Power Powerline 
Communication (LR-LP-PLC) for Home area Network. 
 
Because RPL aims to offer a routing protocol for LLNs, it is by definition not 
restricted to any specific link layer. According to the initial requirements, RPL is a 
layer 3 routing protocol not tied to a specific link layer technology. As presented in 
the “Low Power Link Layer” white Paper [5], link layers technologies other than 
IEEE 802.15.4 may fit with the LLN definition, and PLC is a particularly good 
candidate. 
 
The aim of this section is simply to provide an example of RPL operation using a 
PLC link layer for a home area network. Needless to say that LLN may also use low 
power wireless links or a mix of link layers too. 
 
Similarly to low power wireless link layers, PLC links suffer from variable link 
quality and are not designed to be a broadcast-based technology like Ethernet.  
 
Basically, limitations come from: 

• The strong absorption of the media itself, not designed to support high 
frequency transmissions. 

• Appliance’s power supply presenting low impedance at high frequencies thus 
impacting significantly signal propagation. 

• EMC regulation and power consumption that limit emission levels and 
coverage. 

 
Compared to regular PLC systems, LR-LP-PLC is a particular implementation 
(currently being standardized within ETSI), dedicated to command & control or M2M 
applications, designed to optimize power consumption including to the detriment of 
range and data rate. Some LR-LP-PLC implementations have been shown to consume 
similar power consumption levels as wireless radio systems like 6LowPan nodes. 
 
 

 
 
Figure 6 – Packet Delivery Ratio (PDR) variation over time on several LR-LP-
PLC links 
 



As shown in figure 6 in comparison with figure 1, the PLC link may be subject to as 
many disturbances as a wireless link, because every electrical device may inject noise 
and/or absorb the signal. Considering the number of electrical devices in an electrical 
network like a multi-dwelling unit and their varying electrical behaviors that disturb 
the communication, the routing mechanism over PLC networks has to cope with very 
lossy links. Furthermore, these noise/fading generators create asymmetric links that 
add routing complexity. 
 
As explained in the previous sections, RPL computes multi-hop path according to a 
given metric. This enables the choice of the metric-optimum path to a particular node. 
RPL can also help in fading issues with packet forwarding, enabling the repeating of 
the message along the path. The use of the Expected Transmission Count (ETX) 
metric in RPL networks over LR-LP-PLC will help the RPL nodes to use more 
reliable paths to reach the root. 
 
Note that the link quality measurement may depend on the packet size, larger size 
packets taking more time to transmit and therefore more exposed to disturbances. 
 
Considering LR-LP-PLC technologies as presented in [5], experience tells us that all 
nodes of a single network cannot be reached with a single hop. Due to multiple and 
varying disturbances on the link, LR-LP-PLC networks may take advantage of mesh 
topologies to provide path diversity and RPL recovery mechanisms. RPL address 
these challenges by building a graph (DODAG), and maintaining a topology 
according to a set of Constraints/Metrics computed by low layers. An experiment of a 
RPL network over an LR-LP-PLC implementation subject to real life activity 
(multiphase in a multi-dwelling environment) with the ETX metric, achieved a 97% 
average transmission success instead of less then 50% without RPL (note that this is 
based on a real-life Watteco experiment and may vary with the network). 
 
Because LR-LP-PLC links have limited throughput, the under-reactive behavior of 
RPL helps to maintain a reliable topology with keeping the traffic control overload 
very low. Being over-reactive would result in a global repair for every electrical event 
that may change the network topology.  
 
Because the electrical network behavior cannot be known a priori, and because there 
is no strong relation between wiring and logical connections, self-configuration is the 
key to build a routing topology.    
 



 
 
Figure 7 – Example of a local repair in the RPL routing topology after an 
electrical perturbation, affecting link to node B. 
 
 
Figure 7 highlights the difference between physical and logical topologies over LR-
LP-PLC. This makes auto configuration a mandatory feature. The local repair 
mechanism in RPL provides full connectivity in the PLC network thanks to multi-
hops topologies. 
 
According to its rooted architecture, RPL enables multi physical networking. For 
example, the DODAG root may be used to connect the LLN to the public Internet, 
regardless of the media employed. For instance, a root of a LR-LP-PLC network (thus 
usually main-powered) running RPL may have an 802.15.4 interface and an Ethernet 
interface to the Internet.  
	
  
	
  
6. RPL and Security 
 
Security is critical in smart object networks but implementation complexity and size 
is a core concern for LLNs such that it may be economically or physically impossible 
to include sophisticated security provisions in a RPL implementation. Furthermore, 
many deployments can utilize link-layer or other security mechanisms to meet their 
security requirements without requiring the use of security in RPL. Therefore, the 
security features in RPL are available as optional extensions. 
	
  
When made available, RPL nodes can operate in three security modes. In the first 
mode, called "unsecured," RPL control messages are sent without any additional 
security mechanisms.  Unsecured mode implies that the RPL network could be using 
other security primitives (e.g. link-layer security) to meet application security 
requirements. In the second mode, called "pre-installed," nodes joining a RPL 
instance have pre-installed keys that enable them to process and generate secured 



RPL messages. In the third mode, called "authenticated", nodes can join as leaf nodes 
using pre-installed keys as in pre-installed mode, or join as a forwarding node by 
obtaining a key from an authentication authority. 
 
Each RPL message has a secure variant. The level of security (32-bit and 64-bit MAC 
and ENC-MAC modes are supported) and the algorithms (CCM and AES-128 are 
supported) in use are indicated in the protocol messages. The secure variants provide 
integrity and replay protection and confidentiality and delay protection as an added 
option. 
 
7. Interoperability Testing 
	
  
RPL has been implemented by a number of vendors during the design phase and RPL 
has highly benefited from return on experience as it was implemented. Furthermore 
both the IPSO and Zigbee/IP alliances organized several interoperability tests that 
were successful. Zigbee has tested the “non storing” mode of operation of RPL. 
 
8. Simulation Results 
	
  
In order to get a sense of real-life deployments several vendors are fast adopting the 
routing protocol specified. In addition, simulations have been done on various aspects 
of the algorithm to provide useful data and aid in design choices. For example, in one 
set of simulation results, a discrete event simulator (see [14]) has been developed 
based on OMNET++ and the Castalia module for wireless sensor networks within 
OMNET++.  Hundreds of link traces were gathered to create a link failure model 
database of lossy links.  Each link trace provided the PDR at different times. For some 
links received signal strength indicator (RSSI) data was available and PDR values 
were derived from it due to their implicit correlation. 
 
The simulator reads the database and selects values at random thus providing fairly 
realistic results. When a packet is to be transmitted by a node, the PDR of the link is 
read from the database and the packet is dropped with a probability of 1-PDR. In this 
simulation the data traffic was segregated with 25% of the traffic going in the up 
direction to the root and 75% of the traffic going in the down direction.  
 
Several characteristics were studied: control traffic, routing table size, path efficiency 
and failure handling.  The following observations were made for each: 
 
Control traffic: The control traffic is negligible compared to the data traffic and as the 
DODAG stabilizes the control traffic decreases significantly. 
Routing Table Size:  Observations were made for the number of routing entries in the 
absence of route aggregation. It was observed that number of routing entries increase 
as we get closer to the root of the DODAG.  
Path Efficiency: Observation was made on the optimality of path for P2P traffic. The 
idea was to find out how sub-optimal the path computed by the algorithm for P2P 
traffic compared to an ideal routing protocol. It was observed that although the 
algorithm provides a fairly good quality path additional mechanism would be needed 
to further improve it. 
Failure Handling: This observation provided critical information as it provides the 
protocol’s capability to compute an alternate path in the case of node or link failure. 



Observations were made for local and global repair scenarios to observe the amount 
of time during which no path was available. It was observed that in 80% of the cases 
the period of time without connectivity was 20sec during local repair.  Two 
observations were made for global repair frequency: 1hour and 1minute. These results 
were observed on specific networks for a given RPL parameters settings. It was 
observed that as the frequency interval is reduced the failure time is also reduced at 
the cost of increase in control traffic. It was also observed that if the global repair 
interval was increased to one hour and the local repair was activated the failure time 
was reduced significantly while the control traffic increased slightly, thus providing 
excellent convergence time without affecting the overall scalability (see [14] for 
further details). 
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