
EXAM

Testing, Debugging, and Verification

TDA567/DIT082

DAY: 09 January 2018 TIME: 0830 − 1230

Responsible: Srinivas Pinisetty (Lecturer), Wolfgang Ahrendt (examiner)

Contact: Srinivas Pinisetty (0733873221)
Exam room visit around 9:30 and 11:30

Results: Will be published mid February (or earlier)

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 23p, 3: 24 – 35p, 4: 36 – 47p, 5: 48 – 60p,
G: 24 – 47p, VG: 48 – 60p, Max. 60p.

Please observe the following:

• This exam has 12 numbered pages.
Please check immediately that your copy is complete.

• Answers must be given in English.
• Use page numbering on your pages.
• Start every assignment on a fresh page.
• Write clearly; unreadable = wrong!
• Fewer points are given for unnecessarily complicated solutions.
• Read all parts of the assignment before starting to answer the first question.
• Indicate clearly when you make assumptions that are not given in the assignment.
• Weakest pre-condition rules are provided in Page 12.

Good luck!

1





Exam/Tenta TDA567/DIT082, 09 January 2018 3

Assignment 1 (Testing) (16p)

(a) Briefly explain what White Box and Black Box testing is, and how they
differ.

(2p)

(b) You work for a company that makes tiny robots. Your employer is consid-
ering using a new third party library for taking sensor readings. However,
your boss is not convinced that this library has been tested to a suffi-
ciently high standard and asks you to run some additional tests before
deciding to adopt this new third party library. You don’t have access to
the library source code, only specifications of the methods. Describe the
methodology you would use to systematically derive test-cases from the
specification.

(2p)

(c) Briefly describe the main features of the Extreme Testing methodology.
Also list two of its main advantages.

(2p)

(d) Write down two test-cases for the small program below. Your test cases
should satisfy decision coverage for the program.

(2p)

int method1(int x, int y)

{

int res = 0;

if((x == 0) || (x > y))

res = y;

if (isEven(x))

res = x/2;

return res;

}

(e) For method1, does your test-suite from question (d) satisfy condition
coverage? Motivate and explain why or why not.

(2p)

(f) We also discussed about statement coverage, and branch coverage criteria
that are control-flow graph based. For method1, does your test suit from
question (d) satisfy statement coverage and branch coverage. Motivate
and explain why or why not.

(2p)

(g) Construct a minimal set of test-cases for the code snippet below, which
satisfy Modified Condition Decision Coverage.

(4p)

int method2(int a, int b, int c)

{

if ( (a < 3) || (b > c && c == 5) )

return a;

else

return c;

}



Exam/Tenta TDA567/DIT082, 09 January 2018 4

Assignment 2 Debugging: Minimization using DDMin (7p)

Consider a method that takes an array of integers as input, and computes a code that
it returns as a result. The method fails if the input array consists of two identical even
numbers. For example, the method fails when the input array is [1, 2, 8, 6, 6, 2, 8, 5],
[2, 6, 7, 7, 5, 2].

(a) A 1-minimal failing input is an input where if you remove any single
element, the resulting input succeeds. List all 1-minimal failing inputs
in the following input array: [1,2,8,6,6,2,8,5].

(2p)

(b) Simulate a run of the ddMin algorithm and compute a 1-minimal fail-
ing input from the following initial failing input: [1,2,8,6,6,2,8,5].
Clearly state what happens at each step of the algorithm and what the
final result is.

(5p)



Exam/Tenta TDA567/DIT082, 09 January 2018 5

Assignment 3 (Debugging: Backward dependencies) (7p)

The following Java method is intended to compute the minimum and maximum values
occurring in an integer array.

1 static void minMax(int [] a) {

2 int min = 0;

3 int max = 0;

4 for(int i = 0; i < a.length; i++){

5 if(a[i] < min)

6 min = a[i];

7 if(a[i] > max)

8 max = a[i];

9 }

10 System.out.println(‘‘Min: ’’ + min + ‘‘\n Max: ’’ + max);

11 }

For an input array [1,2,3], the program outputs:
Min: 0

Max: 3

Obviously, there is a defect in the program (maybe you’ve spotted it already?)

(a) When is a statement B data dependent on a statement A? (1p)

(b) When is a statement B control dependent on a statement A? (1p)

(c) When calling the method on the array [1,2,3], which program state-
ments is line 10 backward dependent on?

(3p)

(d) Repair the method and correct any defects. Clearly state where changes
have been made.

(2p)



Exam/Tenta TDA567/DIT082, 09 January 2018 6

Assignment 4 (Formal Specification: Logic) (6p)

(a) Consider the following propositional logic formula, where p and q are
Boolean variables:

(p ∧ q) ∧ (¬p ∨ q)

Is the above formula satisfiable? Is the above formula valid? Show and
explain why?

(2p)

(b) Define the pre and post conditions for the following linearSearch

method formally. Explain all predicates/functions that you use in your
specification.
Informally, the linearSearch method should take a sorted array and
search for the given number in the array. It should return −1 if the given
number is not present in the array, and otherwise return an index such
that the number is at that place in the array.

(4p)

method linearSearch( a : array<int>, element : int)

returns (index : int)

{

.....

.....

}



Exam/Tenta TDA567/DIT082, 09 January 2018 7

Assignment 5 Formal Specification (9p)

For this assignment, consider a flight ticket booking system (we only consider a sim-
plified version of a particular class). Someone has modeled a FlightBooking class
as:

class FlightBooking{

var name : string;

var passportNum : string;

var flightID: int;

var ticketCode : int;

predicate ticketCodeValid()

requires name != null

requires passportNum != null

requires flightID != null

{

ticketCode == generateCode(name, passportNum, flightID)

}

constructor (na : string, pn : string, fl: int)

requires na != null && pn != null

ensures ticketCodeValid()

{

name := na;

passportNum := pn;

ticketCode := generateCode(na, pn, fl);

}

}

function method generateCode(na: string, pn: string, fl: int)

: int

requires na != null && pn != null && fl!= null

{ ... }

Bookings for a particular flight is modeled as a simple array of FlightBooking’s.

We now want a predicate that checks if an array of FlightBooking’s, that denote
bookings for a particular flight journey is valid.

Bookings for a particular flight is a non-null array of FlightBooking where each ele-
ment in the array is non-null, and the flightID corresponding to each element in the
array is equal to the id of the flight, and and the ticket code corresponding to each
booking is valid: the stored ticketCode is equal to the ticket code that is generated
from the other details.



Exam/Tenta TDA567/DIT082, 09 January 2018 8

(a) Write down the body of the
predicate validateBookings(bookings :arr<FlightBooking>,

flightID: int)

{ ... }
Use Dafny syntax in your answer. We do not subtract points for minor
syntactical errors.

(4p)



Exam/Tenta TDA567/DIT082, 09 January 2018 9

We now want to specify a method with the following type:

method checkin(bookingsFl :arr<FlightBooking>, passportNum :srting,

tktCode: int, flightID: int) returns (checkinOK : bool)

requires ?

ensures ?

Informally, the checkin method takes a valid set of flight bookings corresponding to
that flight, a non-null passport number, ticket code and flight id. It returns true if
there is a booking corresponding to the given passport number, and the supplied ticket
code is correct, and false in all other cases.

(b) Write down the formal specification of checkin. In other words, fill in
the requires and ensures clauses above. Use Dafny syntax in your
answer. We do not subtract points for minor syntactical errors.

(5p)



Exam/Tenta TDA567/DIT082, 09 January 2018 10

Assignment 6 (Formal Verification) (10p)

Consider the following Dafny program:

method AlwaysOdd(x : int) returns (y : int)

ensures y%2 == 1;

{

if (x%2 == 1)

{ y := x+1; }

else

{ y := x+2;}

y := (2*y)+1;

}

Next, suppose we want to run the following snippet of Dafny code:

method Test(){

var m := AlwaysOdd(2);

var n := AlwaysOdd(3);

assert m == n;

}

(a) The above code will cause a Dafny compiler error:

Error: assertion violation

Explain why.

(2p)

(b) Fix AlwaysOdd so that Dafny would be able to prove the assertion. (3p)

(c) Prove that your revised version of AlwaysOdd satisfies its post-condition
using the weakest pre-condition calculus. Show all details of your proof
and motivate each step.

(5p)

Weakest pre-condition rules are provided in Page 12.



Exam/Tenta TDA567/DIT082, 09 January 2018 11

Assignment 7 (Formal Verification (proving loops)) (5p)

Consider the following Dafny program:

method m1(n : nat) returns (i : nat)

requires n >= 0

ensures i == 2*n

{

i := 0;

while (i < n)

invariant i <= n

decreases n-i

{ i := i + 1; }

i := 2*i;

}

Prove total correctness (including termination) for the above program using the weakest
pre-condition calculus (Weakest pre-condition rules are provided in Page 12).

(total 60p)



Exam/Tenta TDA567/DIT082, 09 January 2018 12

Additional Notes

Weakest pre-condition rules:

Assignment: wp(x := e, R) = R[x 7→ e]

Sequential: wp(S1;S2, R) = wp(S1, wp(S2, R))

Assertion: wp(assert B, R) = B && R

If-statement:
wp(if B then S1 else S2, R) =

(B ==> wp(S1, R)) ∧ (!B ==> wp(S2, R))

If-statement (empty else branch):
wp(if B then S1, R) =

(B → wp(S1, R))&&(!B ==> R)

While:

wp(while B I D S, R) =
I
∧ (B && I ==> wp(S, I))
∧ (!B && I ==> R)
∧ (I ==> D >= 0)
∧ (B && I ==> wp(tmp := D;S, tmp > D))


