
/GU

Testing, Debugging, and Verification
Testing, Part II

Srinivas Pinisetty 1

09 November 2018

1Slides based on material from Wolfgang Aherndt...



/GU

Lab and exercise sessions

I First lab session next week Monday
I First exercise session next week Thursday
I please bring laptops
I install relevant tools before

I topic: testing
I install JUnit beforehand

(version JUnit4 upwards)



/GU

Overview of this Lecture

I Testing levels and the V-model
I Focus on Unit Testing
I Terminology: Test case, test set, test suit, oracle
I Introduction to JUnit: a framework for rapid unit testing
I Extreme Testing using JUnit



/GU

Recall: The V-Model

Integration Testing

Unit TestingImplementation

Subsystem Design

Architectural Design

Acceptance Testing

System Testing

Requirements Analysis

Customer needs

Choose components,
connections

Structure, behaviour
of subsystem

Code!

User's/client's needs met?

Assembled system
 meets spec?

Does components 
work together?

Test individual methods,
 classes

(many variants!)



/GU

Examples: System, Unit and Integration Testing

Pentium Bug (-94)
I Wrong result on floating point divisions.
I Missing entries in the lookup table.
I Rarely happened (on system level).
I Easy catch in unit test.

Ariane 5 Rocket (-96)
I Exploded 5 secs. after takeoff.
I Used guidance system from Ariane 4.
I Flight trajectory was different. Lacked system testing.



/GU

Examples: System, Unit and Integration Testing

Pentium Bug (-94)
I Wrong result on floating point divisions.
I Missing entries in the lookup table.
I Rarely happened (on system level).
I Easy catch in unit test.

Ariane 5 Rocket (-96)
I Exploded 5 secs. after takeoff.
I Used guidance system from Ariane 4.
I Flight trajectory was different. Lacked system testing.



/GU

Examples: System, Unit and Integration Testing

Mars Lander (-99)
I Crashed on landing.
I Mismatch in units: imperial vs. metric.
I Lacking in integration testing.



/GU

Discussion: Testing Levels of a System for Printing
Paychecks

Name:

Hours:

Print Paycheck

Payroll System

calculates:
salaries, taxes, bonus

Print Paycheck

Formats and prints 
paycheck

Staff Database

Given name, looks up 
address, position.

Person nr:

Think of examples of:
I System Tests
I Integration Tests
I Unit Tests



/GU

Some examples of Tests

I System Tests
I Enter data in GUI, does it print the correct paycheck,

formatted as expected?

I Integration Tests
I Payroll asks database for staff data, are values what’s

expected? Maybe there are special characters (unexpected!).
I Are paychecks formatted correctly for different kinds of

printers?
I Unit Tests

I Does payroll system compute correct tax-rate, bonus etc?
I Does the Print Paycheck button react when clicked?
I ...



/GU

Some examples of Tests

I System Tests
I Enter data in GUI, does it print the correct paycheck,

formatted as expected?
I Integration Tests

I Payroll asks database for staff data, are values what’s
expected? Maybe there are special characters (unexpected!).

I Are paychecks formatted correctly for different kinds of
printers?

I Unit Tests
I Does payroll system compute correct tax-rate, bonus etc?
I Does the Print Paycheck button react when clicked?
I ...



/GU

Some examples of Tests

I System Tests
I Enter data in GUI, does it print the correct paycheck,

formatted as expected?
I Integration Tests

I Payroll asks database for staff data, are values what’s
expected? Maybe there are special characters (unexpected!).

I Are paychecks formatted correctly for different kinds of
printers?

I Unit Tests
I Does payroll system compute correct tax-rate, bonus etc?
I Does the Print Paycheck button react when clicked?
I ...



/GU

Regression Testing

Orthogonal to the above testing levels:

Regression Testing
I Testing that is done after changes in the software.
I Purpose:

gain confidence that the change(s) did not cause (new)
failures.

I Standard part of the maintenance phase of software
development.

E.g. Suppose Payroll subsystem is updated. Need to re-run tests
(which ones?).



/GU

Unit Testing

Rest of testing part of the course: focusing largely on unit testing

recall: unit testing = procedure testing = (in oo) method testing

major issues in unit testing:
1. unit test cases (‘test cases’ in short)
2. order in which to test and integrate units

start with 1.



/GU

Test Cases

The science of testing is largely the science of test cases.



/GU

What does a test case consists of?

(to be refined later)

Test case
I Initialisation (of class instance and input arguments)
I Call to the method under test.
I Decision (oracle) whether the test succeeds or fails

I two first parts seem enough for a test case,
I but test oracle is vital for automated evaluation of test



/GU

‘Success’ vs. ‘Failure’ of Tests

What does it mean for a test to succed?

... or fail?



/GU

Test Cases, more precise

Params,
Input State

Result,
Final State

Method
m

I: (P, S
in
) (R, S

out
)

Yes!

No!

Oracle O
Oracle
O

More formally...
A test case is a tuple 〈m, I, O〉 of method m, input I, and oracle O,
where
I m is the method under test
I I is a tuple 〈P, Sin〉

of call parameters P and initial state Sin

I O(R, Sout) 7→ {pass, fail}
is a function on return value R and final state Sout, telling
whether they comply with correct behaviour



/GU

Test Cases, more precise

Params,
Input State

Result,
Final State

Method
m

I: (P, S
in
) (R, S

out
)

Yes!

No!

Oracle O
Oracle
O

More formally...
A test case is a tuple 〈m, I, O〉 of method m, input I, and oracle O,
where
I m is the method under test
I I is a tuple 〈P, Sin〉

of call parameters P and initial state Sin

I O(R, Sout) 7→ {pass, fail}
is a function on return value R and final state Sout, telling
whether they comply with correct behaviour



/GU

Test Set

A test set TSm for a (Java) method m consists of n test cases:

TSm = {〈m, I1, O1〉, . . . , 〈m, In, On〉}

In general, Oi is specific for each test case!



/GU

Test Suite

A test suite for methods m1, . . . , mk is a union of corresponding test
sets:

TSm1 ∪ . . . ∪ TSmk



/GU

Automated and Repeatable Testing

Basic idea: write code that performs the tests.
I By using a tool you can automatically run a large collection of

tests
I The testing code can be integrated into the actual code, thus

stored in an organised way
I side-effect: documentation
I After debugging, the tests are rerun to check if failure is gone
I Whenever code is extended, all old test cases can be rerun to

check that nothing is broken (regression testing)



/GU

Automated and Repeatable Testing (cont’d)

We will use JUnit for writing and running the test cases.

JUnit: small tool offering
I some functionality repeatedly needed when writing test cases
I a way to annotate methods as being test cases
I a way to run and evaluate test cases automatically in a batch



/GU

JUnit

I Java testing framework to write and run automated tests
I JUnit features include:

I Assertions for testing expected results
I Annotations to designate test cases
I Sharing of common test data
I Graphical and textual test runners

I JUnit is widely used in industry
I JUnit used from command line or within an IDE (e.g., Eclipse)

(Demo)



/GU

Reflection: Extreme Testing

I JUnit designed for Extreme Testing paradigm
I Extreme Testing part of Extreme Programming

(but not depending on that)



/GU

Reflection: Extreme Testing (cont’d)

A few words Extreme Programming
(no introduction here, but see [Myers], Chapter 8)
I Extreme Programming (XP) invented by Beck (co-author of

JUnit)
I Most popular agile development process
I Must create tests first, then create code basis
I Must run unit tests for every incremental code change

I Motivation:
I oo programming allows rapid development
I still, quality is not guaranteed
I aim of XP: create quality programs in short time frames

I XP relies heavily on unit and acceptance testing



/GU

Reflection: Extreme Testing (cont’d)

A few words Extreme Programming
(no introduction here, but see [Myers], Chapter 8)
I Extreme Programming (XP) invented by Beck (co-author of

JUnit)
I Most popular agile development process
I Must create tests first, then create code basis
I Must run unit tests for every incremental code change
I Motivation:

I oo programming allows rapid development
I still, quality is not guaranteed
I aim of XP: create quality programs in short time frames

I XP relies heavily on unit and acceptance testing



/GU

Extreme Unit Testing

modules (classes) must have unit tests before coding begins

benefits:
I You gain confidence that code will meet specification.
I You better understand specification and requirements.
I You express end result before you start coding.
I You may implement simple designs and optimise later

while reducing the risk of breaking the specification.



/GU

Extreme Testing Example: Class Money

c l a s s Money {
private int amount ;
private Currency currency ;

public Money( int amount , Currency currency )
{

th i s . amount = amount ;
th i s . currency = currency ;

}
public Money add(Money m) {

// NO IMPLEMENTATION YET, WRITE TEST FIRST
}

}
c l a s s Currency {

private String name;
public Currency ( String name) {

th i s .name = name;
}

}
Demo in Eclipse.



/GU

Write a Test Case for add()

import org.junit .*;
import s t a t i c org.junit. Assert .*;

public c l a s s MoneyTest {

@Test public void simpleAdd() {
Currency sek = new Currency ("SEK");
Money m1 = new Money (120 , sek);
Money m2 = new Money (160 , sek);
Money result = m1.add(m2);
Money expected = new Money (280 , sek);
assertTrue ( expected . equals ( result ));

}
}

@Test is an annotation, turning simpleAdd into a test case



/GU

Example: Class Money

Now, implement the method under test, and make sure it fails

c l a s s Money {
private int amount ;
private Currency currency ;

....

public Money add(Money m) {
return nul l ;

}
}



/GU

Compile and Run JUnit test class

I JUnit reports failure
I Produce first ’real’ implementation



/GU

Example: Class Money

First real attempt to implement the method under test

c l a s s Money {
private int amount ;
private Currency currency ;

public Money( int amount , Currency currency )
{

th i s . amount = amount ;
th i s . currency = currency ;

}

public Money add(Money m) {
return new Money( amount +m.amount ,
currency );

}
}



/GU

Compile and Run JUnit test class

I JUnit will still report failure
I Fix possible defects, until test passes.

I Can you spot it?
I What if we have different currencies?



/GU

Extend Functionality
Extend Money with Euro-exchange-rate first in test cases

public c l a s s MoneyTest {
@Test public void simpleAdd() {

Currency sek = new Currency ("SEK",9.01);
Money m1 = new Money (120 , sek);
....

}
@Test public void addDifferentCurr() {

Currency sek = new Currency ("SEK",9.01);
Money m1 = new Money (120 , sek);
Currency nok = new Currency ("NOK",7.70);
Money m2 = new Money (160 , nok);
Money result = m1.add(m2);
Money expected = new Money(307, sek);
assertTrue ( expected . equals ( result ));

}
}

Change, and test implementation



/GU

Extend Functionality
Extend Money with Euro-exchange-rate first in test cases

public c l a s s MoneyTest {
@Test public void simpleAdd() {

Currency sek = new Currency ("SEK",9.01);
Money m1 = new Money (120 , sek);
....

}
@Test public void addDifferentCurr() {

Currency sek = new Currency ("SEK",9.01);
Money m1 = new Money (120 , sek);
Currency nok = new Currency ("NOK",7.70);
Money m2 = new Money (160 , nok);
Money result = m1.add(m2);
Money expected = new Money(

307, sek);
assertTrue ( expected . equals ( result ));

}
}

Change, and test implementation



/GU

Extend Functionality
Extend Money with Euro-exchange-rate first in test cases

public c l a s s MoneyTest {
@Test public void simpleAdd() {

Currency sek = new Currency ("SEK",9.01);
Money m1 = new Money (120 , sek);
....

}
@Test public void addDifferentCurr() {

Currency sek = new Currency ("SEK",9.01);
Money m1 = new Money (120 , sek);
Currency nok = new Currency ("NOK",7.70);
Money m2 = new Money (160 , nok);
Money result = m1.add(m2);
Money expected = new Money(307, sek);
assertTrue ( expected . equals ( result ));

}
}

Change, and test implementation



/GU

Common Parts into Test Fixture

public c l a s s MoneyTest {
private Currency sek;
private Money m1;

@Before public void setUp() {
sek = new Currency ("SEK" ,9.01);
m1 = new Money (120 , sek);

}

@Test public void simpleAdd () {
Money m2= new Money (140 , sek);
....

}
@Test public void addDifferentCurr () {

Currency nok = new Currency ("NOK" ,7.70);
Money m2 = new Money (160 , nok);
...

}
}



/GU

Integrating Test Units

Testing a unit may require:
Stubs to replace called procedures

I Simulate behaviour of component not yet
developed.

I E.g. test code that calls a method not yet
implemented.

Drivers to replace calling procedures
I Simulate environment from where procedure is

called.
I E.g. test harness.



/GU

Incremental Testing: Top-Down and Bottom-Up

Explore incremental test strategies, following call hierarchy:

Top-Down Testing
Test main procedure, then go down the call hierarchy
I requires stubs, but no drivers

Bottom-Up Testing
Test leaves in call hierarchy, and move up to the root.
Procedure is not tested until all ‘children’ have been tested.
I requires drivers, but no stubs



/GU

Incremental Testing: Top-Down and Bottom-Up

Explore incremental test strategies, following call hierarchy:

Top-Down Testing
Test main procedure, then go down the call hierarchy
I requires stubs, but no drivers

Bottom-Up Testing
Test leaves in call hierarchy, and move up to the root.
Procedure is not tested until all ‘children’ have been tested.
I requires drivers, but no stubs



/GU

Discussion: Top-down vs Bottom-up Testing

Name:

Hours:

Print Paycheck

Payroll System

calculates:
salaries, taxes, bonus

Print Paycheck

Formats and prints 
paycheck

Staff Database

Given name, looks up 
address, position.

Person nr:

How would you go about
testing the Paycheck system

I Bottom-up?
I Which drivers do

you need?
I Top-down?

I Which stubs do you
need?



/GU

Discussion: Top-down vs Bottom-up Testing

Name:

Hours:

Print Paycheck

Payroll System

calculates:
salaries, taxes, bonus

Print Paycheck

Formats and prints 
paycheck

Staff Database

Given name, looks up 
address, position.

Person nr:

I Bottom-up?
start from e.g. Print Paycheck,
Staff Database
I Which drivers do you need?
I Driver replacing the caller, here

Payroll System, Interface.
I Top-down?

start from e.g. Interface, then
Payroll System
I Which stubs do you need?
I Stubs replacing called

procedures, i.e. Payroll System,
Staff Database, Print Paycheck.



/GU

Top-Down Testing: Pros and Cons

Advantages of Top-Down Testing
I Advantageous if major flaws occur toward top level.
I Early skeletal program allows demonstrations and boosts

morale.

Disadvantages of Top-Down Testing
I Stubs must be produced (often more complicated than

anticipated).
I Judgement of test results more difficult.
I Tempting to defer completion of testing of certain modules.



/GU

Bottom-Up Testing: Pros and Cons

Advantages of Bottom-Up Testing
I Advantageous if major flaws occur toward bottom level.
I Judgement of test results is easier.

Disadvantages of Bottom-Up Testing
I Driver units must be produced.
I The program as an entity does not exist until the last unit is

added.


	Organisation
	JUnit
	Integrating Test Units

