
/GU

Testing, Debugging, and Verification
Testing, Part I

Srinivas Pinisetty 1

08 November 2018

1Slides based on material from Wolfgang Aherndt,...



/GU

Let’s review the course contents

I Testing and Debugging (lab)
I Formal Specification (lab)
I Formal Program Verification (lab)
I Property Based testing
I Loop Invariant Generation



/GU

Some practical things

I Make sure you are registered for the course (see Student
Office). Otherwise your marks cannot be recorded.
I Even if you are repeating the course, only taking labs or exam.
I If in doubt, contact the student office to double check.

I Please sign up for the google group (follow News link)
I Exam date: 15 January 2019.
I About labs in general

I Use Fire system
I Working in pairs is mandatory
I If there are any problems, notify us immediately (don’t wait

until the day of the deadline...).



/GU

Some practical things

Testing block consists of
I 4 lectures (2 lectures this week + 2 lecture next week)
I 1 exercise (Thursday next week)
I 1 lab assignment



/GU

Motivation for Course Unit on Testing

Ideas and techniques of testing have become essential knowledge
for all software developers.

Expect to use the concepts presented here many times in your
career.

Testing is not the only, but the primary method that industry uses
to evaluate software under development.



/GU

Motivation for Course Unit on Testing

Ideas and techniques of testing have become essential knowledge
for all software developers.

Expect to use the concepts presented here many times in your
career.

Testing is not the only, but the primary method that industry uses
to evaluate software under development.



/GU

Motivation for Course Unit on Testing

Ideas and techniques of testing have become essential knowledge
for all software developers.

Expect to use the concepts presented here many times in your
career.

Testing is not the only, but the primary method that industry uses
to evaluate software under development.



/GU

Motivation for Course Unit on Testing (cont’d)

I The field of testing is large
I This course (unit) is rather small

I Does it make sense to get started even?

Cost of SW faults gets higher and higher. If the course will help to
detect a few more faults in real applications, it was a good
investment.

A few basic software testing concepts can be used to design tests
for a large variety of software applications.

The testing techniques present in the literature have much more in
common than is obvious at first glance.



/GU

Motivation for Course Unit on Testing (cont’d)

I The field of testing is large
I This course (unit) is rather small

I Does it make sense to get started even?

Cost of SW faults gets higher and higher. If the course will help to
detect a few more faults in real applications, it was a good
investment.

A few basic software testing concepts can be used to design tests
for a large variety of software applications.

The testing techniques present in the literature have much more in
common than is obvious at first glance.



/GU

Motivation for Course Unit on Testing (cont’d)

I The field of testing is large
I This course (unit) is rather small

I Does it make sense to get started even?

Cost of SW faults gets higher and higher. If the course will help to
detect a few more faults in real applications, it was a good
investment.

A few basic software testing concepts can be used to design tests
for a large variety of software applications.

The testing techniques present in the literature have much more in
common than is obvious at first glance.



/GU

Motivation for Course Unit on Testing (cont’d)

I The field of testing is large
I This course (unit) is rather small

I Does it make sense to get started even?

Cost of SW faults gets higher and higher. If the course will help to
detect a few more faults in real applications, it was a good
investment.

A few basic software testing concepts can be used to design tests
for a large variety of software applications.

The testing techniques present in the literature have much more in
common than is obvious at first glance.



/GU

Motivation for Course Unit on Testing (cont’d)



/GU

A Quiz

A simple program

Input
Read three integer values from the command line.
The three values represent the lengths of the sides of a triangle.

Output
Tells whether the triangle is

Scalene: no two sides are equal
Isosceles: exactly two sides are equal

Equilateral: all sides are equal

Create a Set of at least 15 Test Cases for this Program



/GU

Solution — 1 Point for each Correct Answer

Q 1: An invalid triangle? e.g. (4,1,2)

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c



/GU

Solution — 1 Point for each Correct Answer

Q 1: An invalid triangle? e.g. (4,1,2)

4

1
2

Why not a valid triangle?

(a,b,c) with a > b + c



/GU

Solution — 1 Point for each Correct Answer

Q 1: An invalid triangle? e.g. (4,1,2)

4

1
2

Why not a valid triangle? (a,b,c) with a > b + c



/GU

Solution — 1 Point for each Correct Answer

Q 2: Some permutations of previous? e.g., (1,2,4), (2,1,4)
are still invalid.



/GU

Solution — 1 Point for each Correct Answer

Q 3: An invalid triangle with equal sum? e.g., (4,2,2)

4

2 2



/GU

Solution — 1 Point for each Correct Answer

Q 4: Some permutations of previous? e.g., (2,2,4), (2,4,2)



/GU

Solution — 1 Point for each Correct Answer

Q 5: A valid scalene triangle? e.g., (3,4,5)

4

53



/GU

Solution — 1 Point for each Correct Answer

Q 6: An equilateral triangle? e.g., (3,3,3)

3

3

3



/GU

Solution — 1 Point for each Correct Answer

Q 7: A valid isosceles triangle? e.g., (3,4,3)

3 3

4



/GU

Solution — 1 Point for each Correct Answer

Q 8: All permutations of valid isosceles triangle?

(3,4,3), (3,3,4), (4,3,3)



/GU

Solution — 1 Point for each Correct Answer

Q 9: One side with zero value? e.g., (0,4,3)



/GU

Solution — 1 Point for each Correct Answer

Q 10: One side with negative value? e.g., (-1,4,3)



/GU

Solution — 1 Point for each Correct Answer

Q 11: All sides zero? e.g., (0,0,0)



/GU

Solution — 1 Point for each Correct Answer

Q 12: At least one value is non-integer? e.g., (1,3,2.5)



/GU

Solution — 1 Point for each Correct Answer

Q 13: wrong number of arguments, e.g., (2,4) or (1,2,3,3)



/GU

Solution — 1 Point for each Correct Answer

Q 14 (the most important one):

Did you specify the expected output in each case?



/GU

About the Quiz

I Q 1–13 correspond to failures that have actually occurred in
implementations of the program

I How many questions did you answer?
< 5? 5− 7? 8− 10? > 10? All?

I Highly qualified, experienced programmers score 7.8 on
average



/GU

About the Quiz

I Q 1–13 correspond to failures that have actually occurred in
implementations of the program

I How many questions did you answer?
< 5? 5− 7? 8− 10? > 10? All?

I Highly qualified, experienced programmers score 7.8 on
average



/GU

First Conclusions

I Finding good and sufficiently many test cases is difficult

I Even a good set of test cases cannot exclude all failures
I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson, ca. 35% of code is test cases!



/GU

First Conclusions

I Finding good and sufficiently many test cases is difficult
I Even a good set of test cases cannot exclude all failures

I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson, ca. 35% of code is test cases!



/GU

First Conclusions

I Finding good and sufficiently many test cases is difficult
I Even a good set of test cases cannot exclude all failures
I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson, ca. 35% of code is test cases!



/GU

First Conclusions

I Finding good and sufficiently many test cases is difficult
I Even a good set of test cases cannot exclude all failures
I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson, ca. 35% of code is test cases!



/GU

First Conclusions

I Finding good and sufficiently many test cases is difficult
I Even a good set of test cases cannot exclude all failures
I Without a specification, it is not clear even what a failure is

The discipline of Testing is all about Test Cases

well, almost ...

Remark: At Ericsson, ca. 35% of code is test cases!



/GU

Brainstorming

I What is the purpose of testing?

...



/GU

Test Process Maturity Level in an Organisation

(adapted from [Beizer] and [AmmannOffutt])

Level 0 There is no difference between testing and debugging.

Level 1 Purpose of testing: show correctness.
Level 2 Purpose of testing: show that the software does not

work.
Level 3 Purpose of testing: reduce the risk of using the

software.
Level 4 Testing is a mental discipline helping IT professionals

to develop higher quality software.



/GU

Test Process Maturity Level in an Organisation

(adapted from [Beizer] and [AmmannOffutt])

Level 0 There is no difference between testing and debugging.
Level 1 Purpose of testing: show correctness.

Level 2 Purpose of testing: show that the software does not
work.

Level 3 Purpose of testing: reduce the risk of using the
software.

Level 4 Testing is a mental discipline helping IT professionals
to develop higher quality software.



/GU

Test Process Maturity Level in an Organisation

(adapted from [Beizer] and [AmmannOffutt])

Level 0 There is no difference between testing and debugging.
Level 1 Purpose of testing: show correctness.
Level 2 Purpose of testing: show that the software does not

work.

Level 3 Purpose of testing: reduce the risk of using the
software.

Level 4 Testing is a mental discipline helping IT professionals
to develop higher quality software.



/GU

Test Process Maturity Level in an Organisation

(adapted from [Beizer] and [AmmannOffutt])

Level 0 There is no difference between testing and debugging.
Level 1 Purpose of testing: show correctness.
Level 2 Purpose of testing: show that the software does not

work.
Level 3 Purpose of testing: reduce the risk of using the

software.

Level 4 Testing is a mental discipline helping IT professionals
to develop higher quality software.



/GU

Test Process Maturity Level in an Organisation

(adapted from [Beizer] and [AmmannOffutt])

Level 0 There is no difference between testing and debugging.
Level 1 Purpose of testing: show correctness.
Level 2 Purpose of testing: show that the software does not

work.
Level 3 Purpose of testing: reduce the risk of using the

software.
Level 4 Testing is a mental discipline helping IT professionals

to develop higher quality software.



/GU

Level 0 Thinking

Testing is the same as debugging
I Does not distinguish between incorrect behaviour and defects

in the program
I Does not help develop software that is reliable or safe



/GU

Level 1 Thinking

Purpose: showing correctness
I Correctness is (almost) impossible to achieve
I Danger: you are subconsciously steered towards tests likely to

not fail the program.
I What do we know if no failures?

good software? or bad tests?
I Test engineers have:

I no strict goal
I no real stopping rule
I no formal test technique



/GU

Level 1 Thinking

Purpose: showing correctness
I Correctness is (almost) impossible to achieve
I Danger: you are subconsciously steered towards tests likely to

not fail the program.
I What do we know if no failures?

good software?

or bad tests?
I Test engineers have:

I no strict goal
I no real stopping rule
I no formal test technique



/GU

Level 1 Thinking

Purpose: showing correctness
I Correctness is (almost) impossible to achieve
I Danger: you are subconsciously steered towards tests likely to

not fail the program.
I What do we know if no failures?

good software? or bad tests?

I Test engineers have:
I no strict goal
I no real stopping rule
I no formal test technique



/GU

Level 1 Thinking

Purpose: showing correctness
I Correctness is (almost) impossible to achieve
I Danger: you are subconsciously steered towards tests likely to

not fail the program.
I What do we know if no failures?

good software? or bad tests?
I Test engineers have:

I no strict goal
I no real stopping rule
I no formal test technique



/GU

Level 2 Thinking

Purpose: showing failures
I Looking for failures is a negative activity
I Puts testers and developers into an adversarial relationship
I What if there are no failures?

This describes most software companies.



/GU

Level 2 Thinking

Purpose: showing failures
I Looking for failures is a negative activity
I Puts testers and developers into an adversarial relationship
I What if there are no failures?

This describes most software companies.



/GU

Level 3 Thinking

Purpose: reduce risk
I Whenever we use software, we incur some risk
I Risk may be small and consequences unimportant
I Risk may be great and the consequences catastrophic
I Testers and developers work together to reduce risk

This describes a few “enlightened” software companies.



/GU

Level 3 Thinking

Purpose: reduce risk
I Whenever we use software, we incur some risk
I Risk may be small and consequences unimportant
I Risk may be great and the consequences catastrophic
I Testers and developers work together to reduce risk

This describes a few “enlightened” software companies.



/GU

Level 4 Thinking

A mental discipline that increases quality
I Testing only one way to increase quality
I Test engineers can become technical leaders of the project

I Primary responsibility to measure and improve software quality
I Their expertise should help developers
I Purpose of testing: improve ability of developers to produce

high quality software



/GU

Level 4 Thinking

A mental discipline that increases quality
I Testing only one way to increase quality
I Test engineers can become technical leaders of the project
I Primary responsibility to measure and improve software quality
I Their expertise should help developers

I Purpose of testing: improve ability of developers to produce
high quality software



/GU

Level 4 Thinking

A mental discipline that increases quality
I Testing only one way to increase quality
I Test engineers can become technical leaders of the project
I Primary responsibility to measure and improve software quality
I Their expertise should help developers
I Purpose of testing: improve ability of developers to produce

high quality software



/GU

Activities if Test Engineer

Test engineer: IT professional in charge of test activities, including:
I designing test inputs
I running tests
I analysing results
I reporting results to developers and managers

I automating any of the above



/GU

Activities if Test Engineer

Test engineer: IT professional in charge of test activities, including:
I designing test inputs
I running tests
I analysing results
I reporting results to developers and managers
I automating any of the above



/GU

Developer = or 6= Test Engineer?

Should testing be done by the developers (of the same software)?

different takes on this:

Contra: Test Principles in [Myers]
Principle: Programmer should avoid testing his/her own

program.
(misunderstanding of specs carry over to testing)

Principle: A programming organisation should not test its own
programs.

Pro: Extreme Testing (ET) [BeckGamma]
Principle: Developers create tests first
Principle: Developers re-run test on all incremental changes

Tool: JUnit designed for ET



/GU

Developer = or 6= Test Engineer?

Should testing be done by the developers (of the same software)?

different takes on this:

Contra: Test Principles in [Myers]
Principle: Programmer should avoid testing his/her own

program.
(misunderstanding of specs carry over to testing)

Principle: A programming organisation should not test its own
programs.

Pro: Extreme Testing (ET) [BeckGamma]
Principle: Developers create tests first
Principle: Developers re-run test on all incremental changes

Tool: JUnit designed for ET



/GU

Developer = or 6= Test Engineer?

Should testing be done by the developers (of the same software)?

different takes on this:

Contra: Test Principles in [Myers]
Principle: Programmer should avoid testing his/her own

program.
(misunderstanding of specs carry over to testing)

Principle: A programming organisation should not test its own
programs.

Pro: Extreme Testing (ET) [BeckGamma]
Principle: Developers create tests first
Principle: Developers re-run test on all incremental changes

Tool: JUnit designed for ET



/GU

Testing Levels Based on Software Activity

Acceptance Testing
assess software with respect to user requirements

System Testing
assess software with respect to system-level
specification

Integration Testing
assess software with respect to high-level design

Unit Testing
assess software with respect to low-level unit design

remarks:
– terminology, and depth of this hierarchy, varies in literature



/GU

Testing Levels Based on Software Activity

Acceptance Testing
assess software with respect to user requirements

System Testing
assess software with respect to system-level
specification

Integration Testing
assess software with respect to high-level design

Unit Testing
assess software with respect to low-level unit design

remarks:
– terminology, and depth of this hierarchy, varies in literature



/GU

Testing Levels Based on Software Activity

Acceptance Testing
assess software with respect to user requirements

System Testing
assess software with respect to system-level
specification

Integration Testing
assess software with respect to high-level design

Unit Testing
assess software with respect to low-level unit design

remarks:
– terminology, and depth of this hierarchy, varies in literature



/GU

Testing Levels Based on Software Activity

Acceptance Testing
assess software with respect to user requirements

System Testing
assess software with respect to system-level
specification

Integration Testing
assess software with respect to high-level design

Unit Testing
assess software with respect to low-level unit design

remarks:
– terminology, and depth of this hierarchy, varies in literature



/GU

Testing Levels Based on Software Activity

Acceptance Testing
assess software with respect to user requirements

System Testing
assess software with respect to system-level
specification

Integration Testing
assess software with respect to high-level design

Unit Testing
assess software with respect to low-level unit design

remarks:
– terminology, and depth of this hierarchy, varies in literature



/GU

V-Model

Integration Testing

Unit TestingImplementation

Subsystem Design

Architectural Design

Acceptance Testing

System Testing

Requirements Analysis

Customer needs

Choose components,
connections

Structure, behaviour
of subsystem

Code!

User's/client's needs met?

Assembled system
 meets spec?

Does components 
work together?

Test individual methods,
 classes

(many variants!)



/GU

Testing Levels Based on Software Activity (cont’d)

System Testing – testing system against specification of externally
observable behaviour

Integration Testing – testing interaction between modules
Unit Testing – testing individual units of a system

traditionally: unit = procedure
in object-orientation (Java): unit = method

Failures on higher levels less useful for debugging, as propagation
from defect to failure is difficult to trace.

This course focuses on lower level: unit testing



/GU

Testing Levels Based on Software Activity (cont’d)

System Testing – testing system against specification of externally
observable behaviour

Integration Testing – testing interaction between modules

Unit Testing – testing individual units of a system
traditionally: unit = procedure
in object-orientation (Java): unit = method

Failures on higher levels less useful for debugging, as propagation
from defect to failure is difficult to trace.

This course focuses on lower level: unit testing



/GU

Testing Levels Based on Software Activity (cont’d)

System Testing – testing system against specification of externally
observable behaviour

Integration Testing – testing interaction between modules
Unit Testing – testing individual units of a system

traditionally: unit = procedure
in object-orientation (Java): unit = method

Failures on higher levels less useful for debugging, as propagation
from defect to failure is difficult to trace.

This course focuses on lower level: unit testing



/GU

Testing Levels Based on Software Activity (cont’d)

System Testing – testing system against specification of externally
observable behaviour

Integration Testing – testing interaction between modules
Unit Testing – testing individual units of a system

traditionally: unit = procedure
in object-orientation (Java): unit = method

Failures on higher levels less useful for debugging, as propagation
from defect to failure is difficult to trace.

This course focuses on lower level: unit testing



/GU

Testing Levels Based on Software Activity (cont’d)

System Testing – testing system against specification of externally
observable behaviour

Integration Testing – testing interaction between modules
Unit Testing – testing individual units of a system

traditionally: unit = procedure
in object-orientation (Java): unit = method

Failures on higher levels less useful for debugging, as propagation
from defect to failure is difficult to trace.

This course focuses on lower level: unit testing



/GU

Literature related to this lecture

I Introduction to Software Testing - by Paul Ammann, Jeff
Offutt
I Testing levels (Chapter 1)


	Overview
	Motivation
	Quiz
	Testing Activities

