Examples

Testing

Decision coverage

Write down two test-cases for the program below. Your test cases
should satisfy decision coverage.

int methodl(int x, int y)
{

int res = 0;
if((x=0) [| (x>1y))

res = y;
if (isEven(x))
res = x/2;

return res,

Decision coverage (Solution)

Write down two test-cases for the program below. Your test cases
should satisfy decision coverage.

int methodl(int x, int y)

{
int res = 0;
if((x == 0) || (x> y))
res =y,
if (isEven(x))
res = x/2;
return res;
+

Solution: Each decision in the program needs at least one test case where it evaluates
to true and one where it evaluates to false

* {x-->3,y-->0}(First decision is true, the second is false)

 {x-->4,y--> 15} (First decision is false, the second is true)

MCDC Criteria

Consider the following piece of (Java) code.
Construct a set of test cases which satisfies MCDC criteria.

int method2(int a, int b, int c)

{
if ((a<3) || (b>c && c ==5))
return a;
else
return c;

MCDC Criteria (Solution)

Consider the following piece of (Java) code.
Construct a set of test cases which satisfies MCDC criteria.

int method2(int a, int b, int c)

{
if ((a<3) || (b>c && c ==5))
return a;
else
return c;
Solution ¥

{a=4,b=1,c=5}
{a=1,b=1,c=5}
{a=4,b=7,c=5}
{a=4,b=7,c=2}

Minimization using DDMin

Consider a method that takes an array of integers as input, and computes a
code that it returns as a result. The method fails if the input array consists of
two identical even numbers.

For example, the method fails when the input arrayis [1, 2, 8§, 6, 6, 2, 8, 5],
[21 6) 7) 7) 5) 2]'

Simulate a run of the ddMin algorithm and compute a minimal failing input
from the following initial failing input: [1,2,8,6,6,2,8,5].

Minimization using DDMin (Solution)

(b) Start with granularity n = 2 and sequence [1,2,8,6,6,2,8,5].

The number of chunks is 2
==>n:2 1,2 8 6] PASS (take away second chunk)
==>n:2,(6,2,8,5] PASS (take away first chunk)

Increase number of chunks to min(n * 2, len([1,2,8,6,6,2,8,5])) =4
==>n:4,[8,6,6,2, 8,5 FAIL (take away first chunk)

Adjust number of chunks to maxr(n —1,2) =3
==>n:3,[6,2,8,5 PASS (take away first chunk)
==>n: 3,[8,6, 8,5 FAIL (take away second chunk)

Adjust number of chunks to max(n —1,2) = 2
==>n: 2,[8,5] PASS (take away first chunk)
==>n:2,[8,6] PASS (take away second chunk)

Increase number of chunks to min(n = 2, len([8,6,8,5]) = 4
==>n:4,[6,8,5 PASS (take away first chunk)
==>n:4,[8,8,5| FAIL (take away second chunk)

Minimization using DDMin (Solution

Increase number of chunks to min(n x 2, len([8,6,8,5]) = 4
==>n:4,[6,8,5] PASS (take away first chunk)
==>n:4,[8,8,5] FAIL (take away second chunk)

Adjust number of chunks to max(n —1,2) =3
==>n: 3,[8,5] PASS (take away first chunk)

==>n: 3,8,5] PASS (take away second chunk)
==>n: 3,[8,8| FAIL (take away third chunk)

Adjust number of chunks to maz(n —1,2) =2

==>n: 2, (8| PASS (take away first chunk)
==>n: 2, 8] PASS (take away second chunk)

As n == len(|[8, 8]) the algorithm terminates with 1-minimal failing input [8, 8]

Formal Specification: Logic

Consider the following propositional logic formula, where p and g are

Boolean variables. Is the formula satisfiable? Is the formula valid? Show
and explain why?

(PAQ)A(-pVa)

Formal Specification: Logic (Solution)

Consider the following propositional logic formula, where p and g are

Boolean variables. Is the formula satisfiable? Is the formula valid? Show
and explain why?

(PAQ)A(-pV Q)
Solution

pAq | pVaqgl| (pANqg N(-pVa)

ey ey Bl e
el Bes N (e
==
eSlesl=s T
= =
e ll=sl=s

Formal Specification

Define the pre and post conditions for the following linearSearch method formally.

method linearSearch(a : array<int>, element : int)
returns (index : int)

iiiii

ttttt

Informal description: the linearSearch method should take a sorted array and search
for the given number in the array. It should return -1 if the given number is not
present in the array, and otherwise return an index such that the number is at that
place in the array.

