
/GU

Deriving Loop Invariants and Loop Variants

Srinivas Pinisetty1

17 December 2018

1Lecture slides based on material from Wolfgang Aherndt,..



/GU

How to Derive Loop Invariants?

Example
requires n >= 0
ensures i == 2*n
i := 0;
while (i < n) {

i := i + 1;
}
i := i * 2;

What needs to be true after the loop?
I wp(i:= i*2, i == 2*n) which is equal to (i == n)

I What, in addition to negated guard (i >= n), is needed to
prove this?

I (i <= n) (why isn’t (i < n) suitable?)
I (i <= n) is established before loop, and is preserved.



/GU

How to Derive Loop Invariants?

Example
requires n >= 0
ensures i == 2*n
i := 0;
while (i < n) {

i := i + 1;
}
i := i * 2;

What needs to be true after the loop?
I wp(i:= i*2, i == 2*n) which is equal to (i == n)
I What, in addition to negated guard (i >= n), is needed to

prove this?

I (i <= n) (why isn’t (i < n) suitable?)
I (i <= n) is established before loop, and is preserved.



/GU

How to Derive Loop Invariants?

Example
requires n >= 0
ensures i == 2*n
i := 0;
while (i < n) {

i := i + 1;
}
i := i * 2;

What needs to be true after the loop?
I wp(i:= i*2, i == 2*n) which is equal to (i == n)
I What, in addition to negated guard (i >= n), is needed to

prove this?
I (i <= n) (why isn’t (i < n) suitable?)

I (i <= n) is established before loop, and is preserved.



/GU

How to Derive Loop Invariants?

Example
requires n >= 0
ensures i == 2*n
i := 0;
while (i < n) {

i := i + 1;
}
i := i * 2;

What needs to be true after the loop?
I wp(i:= i*2, i == 2*n) which is equal to (i == n)
I What, in addition to negated guard (i >= n), is needed to

prove this?
I (i <= n) (why isn’t (i < n) suitable?)
I (i <= n) is established before loop, and is preserved.



/GU

How to Derive Loop Variants?

Example
requires n >= 0
ensures i == 2*n
i := 0;
while (i < n) {

i := i + 1;
}
i := 2*i;

What happens to the loop counter?
Look at the loop counter, i. It starts at 0 and increments by one
on each iteration, until reaching n. Hence, the difference between
i and n shrink each time. Candidate variant: n-i

Is (n-i) bounded from below by 0?
Yes! We have found a suitable loop variant!



/GU

How to Derive Loop Variants?

Example
requires n >= 0
ensures i == 2*n
i := 0;
while (i < n) {

i := i + 1;
}
i := 2*i;

What happens to the loop counter?
Look at the loop counter, i. It starts at 0 and increments by one
on each iteration, until reaching n. Hence, the difference between
i and n shrink each time. Candidate variant: n-i

Is (n-i) bounded from below by 0?
Yes! We have found a suitable loop variant!



/GU

Formally Prove Correctness with an Invariant and a Variant

Example
requires n >= 0
ensures i == 2*n
i := 0;
while (i < n)
invariant i <= n
variant n-i
{ i := i + 1;}

i := 2*i;



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Finding the invariant
First attempt: use postcondition z == x+y



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Finding the invariant
First attempt: use postcondition z == x+y

I Not true at start whenever y != 0

I Not preserved by loop, because z is increased



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Finding the invariant
What stays invariant?



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Finding the invariant
What stays invariant?
I The sum of z and i: z + i = x + y “Generalization”
I Can help to think of partial result: “δ” between z and x + y



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Checking the invariant
Is z + i = x + y a good invariant?



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Checking the invariant
Is z + i = x + y a good invariant?
I Holds in the beginning and is preserved by loop



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Checking the invariant
Is z + i = x + y a good invariant?
I Holds in the beginning and is preserved by loop
I But postcondition not achieved by z + i = x + y && i <= 0



/GU

Finding the invariant: Example

Example (Silly Addition)

method SillyAdd (x:int, y:int) returns (z:int)
ensures z==x+y
{
var i := y;
z := x;
while (i > 0) {

z := z + 1;
i := i - 1;}}

Strengthening the invariant
Postcondition holds if y >= 0

I Sufficient to add i >= 0 to z + i = x + y && i <= 0

I Hints at missing precondition: y >= 0



/GU

Exercise

I Patch the specification contract for SillyAdd.
I In addition to the invariant from the example, also state a

variant
I Formally prove SillyAdd correct using the invariant and

variant by following the ”Checklist for loop correctness
discussed earlier”.



/GU

Solution

method SillyAdd (x:int, y:int) returns (z:int)
requires y >= 0;
ensures z==x+y;
{

var i := y;
z := x;
while (i > 0)
invariant z + i == x + y && i >= 0;
variant i;
{

z := z + 1;
i := i - 1;}

}

Formally prove SillyAdd correct



/GU

Some Tips On Finding Invariants

General Advice
I Invariants must be developed!
I Be as systematic in deriving invariants as when debugging a

program
I Don’t forget: the program or contract (more likely) can be

buggy
I In this case, you won’t find an invariant!



/GU

Some Tips On Finding Invariants, Cont’d

I The desired postcondition is a good starting point
I What, in addition to negated loop guard, is needed for it to

hold?

I If the invariant candidate is not preserved by the loop body:
I Does it need strengthening?
I Can you add stuff from the precondition?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant
patterns

I If the invariant is not initially valid:
I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the precondition?

I Several “rounds” might be required
I Use Dafny

I Check which case of the loop invariant cannot be proved by
the verifier



/GU

Some Tips On Finding Invariants, Cont’d

I The desired postcondition is a good starting point
I What, in addition to negated loop guard, is needed for it to

hold?
I If the invariant candidate is not preserved by the loop body:

I Does it need strengthening?
I Can you add stuff from the precondition?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant
patterns

I If the invariant is not initially valid:
I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the precondition?

I Several “rounds” might be required
I Use Dafny

I Check which case of the loop invariant cannot be proved by
the verifier



/GU

Some Tips On Finding Invariants, Cont’d

I The desired postcondition is a good starting point
I What, in addition to negated loop guard, is needed for it to

hold?
I If the invariant candidate is not preserved by the loop body:

I Does it need strengthening?
I Can you add stuff from the precondition?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant
patterns

I If the invariant is not initially valid:
I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the precondition?

I Several “rounds” might be required
I Use Dafny

I Check which case of the loop invariant cannot be proved by
the verifier



/GU

Some Tips On Finding Invariants, Cont’d

I The desired postcondition is a good starting point
I What, in addition to negated loop guard, is needed for it to

hold?
I If the invariant candidate is not preserved by the loop body:

I Does it need strengthening?
I Can you add stuff from the precondition?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant
patterns

I If the invariant is not initially valid:
I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the precondition?

I Several “rounds” might be required
I Use Dafny

I Check which case of the loop invariant cannot be proved by
the verifier



/GU

Some Tips On Finding Invariants, Cont’d

I The desired postcondition is a good starting point
I What, in addition to negated loop guard, is needed for it to

hold?
I If the invariant candidate is not preserved by the loop body:

I Does it need strengthening?
I Can you add stuff from the precondition?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant
patterns

I If the invariant is not initially valid:
I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the precondition?

I Several “rounds” might be required

I Use Dafny
I Check which case of the loop invariant cannot be proved by

the verifier



/GU

Some Tips On Finding Invariants, Cont’d

I The desired postcondition is a good starting point
I What, in addition to negated loop guard, is needed for it to

hold?
I If the invariant candidate is not preserved by the loop body:

I Does it need strengthening?
I Can you add stuff from the precondition?
I Try to express the relation between partial and final result

I Simulate a few loop body executions to discover invariant
patterns

I If the invariant is not initially valid:
I Can it be weakened such that the postcondition still follows?
I Did you forget an assumption in the precondition?

I Several “rounds” might be required
I Use Dafny

I Check which case of the loop invariant cannot be proved by
the verifier



/GU

Exercise: Find the loop invariant
The Max method should return the maximum element in the array.

I Provide appropriate pre-conditions to prevent the method being called on
inputs that would cause exceptions.

I Provide post-conditions stating that max indeed is the maximum value of
arr

I Provide appropriate loop invariants which allows the post-conditions to be
proved (hint: there are three).

method Max(arr : array<int>) returns (max : int)
{

var i := 1;
max := arr[0];
while(i < arr.Length)
{

if(arr[i] > max)
{max := arr[i];}
i := i +1;

}
}



/GU

Exercise: Solution

method Max(arr : array<int>) returns (max : int)
requires arr !=null && arr.Length > 0;
ensures forall i :: 0 <= i < arr.Length ==> max >= arr[i

];
ensures exists i :: 0 <= i < arr.Length && max == arr[i];
{

var i := 1;
max := arr[0];
while(i < arr.Length)
invariant 0 < i <= arr.Length;
invariant forall j :: 0 <= j < i ==> max >= arr[j

];
invariant exists j :: 0 <= j < i && max == arr[j

];
{

if(arr[i] > max)
{max := arr[i];}
i := i +1;

}
}



/GU

Exercise

I The method kthEven is supposed to return the k th even number, where 0
is considered as the first.

I Provide a suitable pre- and postconditions, as well as a loop invariant.
I Prove correctness.

method kthEven(k : int) returns (e : int)
{

e := 0;
var i := 1;
while (i < k)
{

e := e + 2;
i := i + 1;

}
}



/GU

Exercise: Solution

method kthEven(k : int) returns (e : int)
requires k > 0;
ensures e == 2 * (k-1)
{
e := 0;
var i := 1;
while (i < k)
invariant e == 2*(i-1) && i <= k
{

e := e + 2;
i := i + 1;

}
}



/GU

Summary

I Invariant rule has three parts:
I The invariant must hold at the beginning of the loop
I The invariant must be preserved by an arbitrary execution of

the
loop body provided that the guard is true

I The negated guard plus the invariant imply the desired
postcondition

I Loop invariants can be developed systematically
I Start with the desired postcondition
I Discover patterns through execution of a few loop bodies
I Use strengthening, weakening, generalisation..

I Remember, your program or contract might be wrong!


	Title
	The Magic Explained
	Tips

