
Testing, debugging &

verification

Srinivas Pinisetty

This course

Introduction to techniques to get (some)

certainty that your program does what it’s

supposed to.

Specification: An unambiguous description of what

a function (program) should do.

Bug: failure to meet specification.

What is a Bug? Basic Terminology

● Defect (aka bug, fault) introduced into code by

programmer (not always programmer's fault, if, e.g.,

requirements changed)

● Defect may cause infection of program state during

execution (not all defects cause infection)

● Infected state propagates during execution (infected parts

of states may be overwritten or corrected)

● Infection may cause a failure: an externally observable

error (including, e.g., non-termination)

Terminology

● Testing - Check for bugs

● Debugging – Relating a failure to a defect

(systematically find source of failure)

● Specification - Describe what is a bug

● (Formal) Verification - Prove that there are no bugs

Cost of certainty

Man hours

Unit testing

Property based testing

Formal Verification

More certainty = more work

(*) Graph not based on data,

only indication

Contract metaphor

Supplier: (callee)

Implementer of method

Client: (caller) Implementer of

calling method or user

Contract:

Requires (precondition): What the client must ensure

Ensures (postcondition): What the supplier must ensure

● Testing

○ Unit testing

■ Coverage criteria

● Control-Flow based

● Logic Based

■ Extreme Testing

■ Mutation testing

○ Input space partitioning

○ Property based testing

○ Black-box, white-box

○ Levels of detail

○ Test driven development

● Debugging

○ Input Minimisation (Shrinking) :

■ 1-minimal

■ ddMin

○ Backwards dependencies:

■ data-dependent

■ control-dependent

■ backward dependent

● Formal specification

○ Logic

■ Propositional logic

■ Predicate Logic

■ SAT

■ SMT

○ Dafny

■ Assertions

■ range predicates

■ method, function, predicate, function

method

■ modifies, framing

■ Loop invariant

■ Loop variant

■ ……

● Formal verification

○ Weakest precondition calculus

○ Prove program correct

○ Loop - Partial correctness

○ Loop - Total correctness

○ Unit testing

■ Coverage criteria

● Control-flow based

● Logic based

■ Mutation testing

○ Input space partitioning

○ Property based testing

○ Black-box, white-box

○ Levels of detail

○ Test driven development

Testing

Testing

Testing can give some certainty about code,

but typically not any guarantees

Almost always cannot test all possible inputs

(practically infinite)

Unit Test

A unit(= method) tests consists of:

● Initialization

● Call to method

● Check if test fails or not

How do we pick tests?

A guideline: Input space partitioning

1. Look at specification

2. Divide input space into regions with for which the program acts

“similar”.

3. Take some inputs from each region, especially from borders

This is a guideline, not a formal procedure: use common sense to define “similar”,“border” and

“sensible”

Use multiple partitions, or subdivide partitions when sensible

Coverage criteria
● Motivation:

○ How do we know if enough unit tests?

● An answer: Check how much of the code is “covered” by the unit tests?

● Ways of defining covered:

● Control Flow based
○ Statement coverage

○ Branch coverage

○ Path coverage

● Logic Based
○ Decision coverage

○ Condition coverage

○ Modified condition decision coverage

● Full coverage does not give guarantee!

Control-flow based coverage

Control-flow based coverage
● Control flow graph:

○ Node = statement or start of while/if/for

○ Edge from a to b iff next execution step after a can be b

○ Label on edge = condition which should hold to traverse

edge (or no condition)

● Execution path of unit test: path followed through graph by

executing test

● Statement coverage: for each node, there exists a test, such

that the node is visited by the execution path of that test

● Branch coverage: for each edge, there exists a test, such that

the edge is traversed in the execution path of that test

Statement coverage: Example

int russianMultiplication(int a, int b){

int z = 0;

while(a != 0){

if(a%2 != 0){

z = z+b;

}

a = a/2;

b = b*2;

}

return z;

}

Each test case has an execution path.

russianMultiplication(1,0) == 0

Note: all nodes are visited, so statement coverage

Branch coverage: Example

int russianMultiplication(int a, int b){

int z = 0;

while(a != 0){

if(a%2 != 0){

z = z+b;

}

a = a/2;

b = b*2;

}

return z;

}

Branch coverage: is each edge taken in a test case?

russianMultiplication(2,0) == 0

Logic-based coverage

Logic-based coverage

Decision: Boolean expression

Condition: Atomic boolean sub-expression (does not contain other boolean sub-expression)

Decision coverage: Each outcome(T,F) of each decision occurs in a test (implies branch coverage)

Condition coverage: Each outcome of each condition of each decision occurs in a test

((a < b) || D) && (m ≥ n ∗ o)

conditions: (a < b), D, (m >= n * o)

Decision

Modified Condition Decision Coverage (MCDC)

Condition/decision coverage + show that each condition influences its decision

independently

Condition c independently influences decision d if:

Changing only c changes outcome of d (for some choice of outcomes of other conditions)

((a < b) || D) && (m ≥ n ∗ o) Conditions: (a < b), D , m >= n * o

Show that (a < b) influences decision

independently, set

{D = False, m =2, n =1, o = 1}

a b a < b Result

1 2 T T

2 1 F F

Example:

Logical decision coverage

Decision: if(x < 1 || y > z)

Do the following satisfy decision, condition, MCDC?

[x=0, y=0, z=1] and [x=2, y=2, z=1] : CC

[x=2, y=2, z=1] and [x=2, y=0, z=1] : DC

[x=2, y=2, z=2], [x=0, y=0, z=1], [x=2, y=0, z=0], [x=2, y=2, z=1] :

CC, DC, MCDC

Black box - white box

● Black-box testing: Create tests only based

on externals (specification) without knowing

internals (source code)

● White-box testing: Create test based on

externals & internals

Mutation Testing

How do we know we have enough test

cases?

One answer: coverage criteria

Another answer: mutation testing

Mutation testing:

Can lead to identifying some holes in test set, but does not give certainty!

Mutation testing overview

1. (Automatically, randomly) Change (mutate) the function

under test a bit

2. The new function(mutant) should now be incorrect (we

hope)

3. Is there a test that now fails (test that “kills” the mutant)? If

so, good. If not, maybe a test is missing?

Trivial example

boolean implies(boolean a, boolean b){ return !a || b; }

Requires:

Ensures: result == a ⇒b

Tests:

implies(true,true) (== true)

!implies(true,false)

Mutant: boolean implies(boolean a, boolean b){ return a && b; }

Mutant not killed! Add more tests!

Extra Tests:

implies(false,true)

implies(false,false)
Mutant killed! Good!

Example mutation steps

● Delete statement

● Statement duplication

● Replace boolean expression with true or false

● Replace > with ≥

● Replace 0 with 1

● ...

Another example

int nrInInterval(int[] vals, int low, int high) {

int i = 0;

while(i < arr.length && arr[i] < low) { i+= 1; }

int res = 0;

while(i < arr.length && arr[i] <= high) { i+=1;

res+=1; }

return res;

}

Requires: arr is sorted in non-decreasing order and low <= high

Ensures: result = number of values in arr in interval [low,high]

tests: nrInterval({1,2,4,6,8,11}, 2, 7) == 3

Mutant that is not killed?

int nrInInterval(int[] vals, int low, int high) {

int i = 0;

while(i < arr.length && arr[i] < low) { i+= 1; }

int res = 0;

while(i < arr.length && arr[i] < high) { i+=1; res+=1;

}

return res;

}

Mutation testing

● Tools:

○ MuJava

○ Mutator (Java, Ruby, JavaScript and PHP)

● Gives some indication of test set quality, but:

○ If input space/output space is infinite and nr. tests finite, it is always possible to change

program such that all tests succeed but does not conform to spec (if all changes allowed)

○ Perfect mutation score (i.e. all mutants killed) does not mean perfect test set (randomness, not

all possible changes covered)

Property based testing

Property based Testing -

motivation

● Writing units test takes a lot of effort!

● More unit test = more certainty

● Automate!

Property based testing =

Generate random inputs and check that a property of the

output holds

Different properties to test:

● Postcondition holds

● …

Example - test that postconditon holds

int[] sort(int[] input)

Specification:

Requires: A non-null array as input

Ensures: A new array that is sorted in ascending order, that is a permutation of the input array

Unit Tests:

sort({}) = {}

sort({1,2,3}) = {1,2,3}

sort({3,2,1}) = {1,2,3}

sort({2,2,1}) = {1,2,2}

sort({1,1,1}) = {1,1,1}

sort({3,5,3,4} = {3,4,5,5}

....

Property based Testing

● Generate a random input that satisfies the precondition

● Feed it to the function

● Check that a property on the output holds (postcondition)

bool singleTest(){
int[] input = generateRandomArr();
int[] output = sort(input);
return isSorted(output) && isPermutationOf(output, input);

}

Doesn’t have to be efficient! Run many times!

Unit Testing vs Property based testing

Man hours

Unit testing

Computing hours

Man hours = expensive, Compute time = cheap

Terminology

● Regression testing: (Automatically) run all tests again after change in code

● Automated testing: Store tests (and their outcomes) so that we can

automatically run them

● Continuous integration: A server checks out the current version of the code

periodically, builds code and runs tests

● Stub: placeholder implementation of a leaf function

● Driver: placeholder for a calling function, sets up the context

Testing levels

● Acceptance testing: Test against user-requirements

● System Testing : Test against system-level specification

● Integration Testing: Testing interaction between modules

● Unit testing: Testing unit (method)

Debugging

○ Debugging steps

○ Input Minimisation (Shrinking)

■ ddMin

○ Backwards dependencies:

■ data-dependent

■ control-dependent

■ backward dependent

Debugging Steps

1. Reproduce the error, understand

2. Isolate and Minimize (shrink)– Simplification

3. Eyeball the code, where could it be?– Reason backwards

4. Devise and run an experiment to test your hypothesis

5. Repeat 3,4 until you understand what is wrong

6. Fix the Bug and Verify the Fix

7. Create a Regression Test

Separate relevant from irrelevant

Being systematic: avoid repetition, ensure progress, use tools

The ddMin Algorithm (Automatic input simplification)

Example: nrChunk = 3

4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 7 8 9 10 1 2 3 4 5 6

● Consider input C

● Divide input into chunks (num. of chunks n, initially n=2)

● Cut away a part of input Ci, does the test still fail? If so, continue without that part (i.e., C =

C\Ci), with n = max(n-1,2)

● When no failure occurs when we cut away any part: Increase granularity (* 2) (number of

chunks n = min(2*n, |C|))

● Done when cutting away doesn’t help anymore and nrChunks = length of input

●Overview

public static int checkSum(int[] a)

● is supposed to compute the checksum of an integer array

● gives wrong result, whenever the array contains two identical

consecutive numbers (but we don’t know that yet!)

● we have a failed test case, e.g., from protocol transmission:

{1,3,5,3,9,17,44,3,6,1,1,0,44,1,44,0}

Want to get: {1,1},{3,3} or {44,44}

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0

nrChunks = 2
Input =

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0

1 3 5 3 9 17 44 3 6 1 1 0 44 1 44 0

6 1 1 0 44 1 44 0

6 1 1 0 44 1 44 0 nrChunks = 2
Input =

i = 0

i = 1

i = 0

6 1 1 0Input = nrChunks = 2

6 1 1 0

6 1 1 0

i = 0

i = 1 No failure occurs -> double nrChunks

6 1 1 0Input = nrChunks = 4

6 1 1 0 i = 0

6 1 1Input = nrChunks = 3

6 1 1 i = 0

1 1Input = nrChunks = 2

1 1 i = 0

11 i = 1

No failure occurs and nrChunks = length of input --> done!

Result = 1 1

ddMin

● See lecture slides for algorithm, examples

●Practice other examples (exercises, sample exams)..

Backwards dependencies
int low = 0

int high = array.length

while (low <= high)

mid = (low + high) / 2

if (target < array [mid])

high = mid - 1

else if (target > array [mid])

low = mid + 1

return mid

return -1

Statement B is control-dependent on A iff A influences

whether B is executed.

More formally, Statement B is control dependent on

statement A iff:

● A is a control statement (while, for, if or else if)

● Every path in the control flow graph from the

start to B must go through A.

Statement B is data-dependent on A iff A writes a variable that

B reads.

More formally, Statement B is data dependent on

statement A iff:

• A writes to a variable v that is read by B

• There is at least one execution path between A

and B in which v is not assigned another value.

``The outcome of A can directly influence a variable

read in B''

Backwards dependencies int low = 0

int high = array.length

while (low <= high)

mid = (low + high) / 2

if (target < array [mid])

high = mid - 1

else if (target > array [mid])

low = mid + 1

return mid

return -1

Statement B is (Directly) backwards dependent on A if either or

both:

B is control-dependent on A

B is data-dependent on A

Statement B is backwards dependent on A if B is directly

backwards dependent on A in one or more steps

● Formal specification

○ Logic

■ Propositional logic

■ Predicate Logic

■ SAT

■ SMT

○ Dafny

■ Programming & Specification language

■ Framing

■ Loop invariant

■ Loop variant

Motivation: Write

specification in fully formal

language such that the

computer can check for no

bugs

Propositional Logic

Formula consist of Boolean variables and ¬ (!), ⋎(||), ⋏ (&&),⇒(==>) , ⇔ (<==>)

A propositional formula F is...

• satisfiable if F can be True (there is at least one row where the rightmost column is T)

• valid if F is always True (the rightmost column is T for each row)

p q p ⋎ q q ⇒ p (p ⋎ q) ⋏ (q ⇒ p)

F F F T F

F T T F F

T F T T T

T T T T T

Truth table:

First-order logic (Predicate logic)

Extends propositional logic by:

• Types, other than boolean e.g. int, real, BankCard,

• Functions (mathematical) e.g. +, max, abs, fibonacci,...

• Constants are functions with no arguments e.g. 0, 1,

• Predicates (functions returning a boolean) e.g. isEven, >, isPrime...

• Quantifiers for all (∀), there exists (∃)

First-order logic: Examples

∀i : 𝓩, 0 ≤ i < arr.Length ⇒ arr[i] ≥ 0

All elements of arr are positive

∃ i : 𝓩, 0 ≤ i < arr.Length ⋏ arr[i] ≥ 0

There is a positive element in the array

Expressing specifications in FOL

●Practice examples (lectures, exercises, labs,..)

SAT and SMT solving

SAT

Solver

Propositional

formula

Yes! p = T, q = F,

No

Programs that solve whether formula is satisfiable

Can also be used to check if formula P is a tautology:

Check that ¬P is not satisfiable

SMT Solver

+

Quantifiers

First-order formula

Yes!

Don’t know or timeout

Dafny

● Dafny is an imperative language with integrated support for formal

specification and verification.

● Assert = prove, not check

● Pre/post conditions written in first order logic

● Automatically proved, rejected otherwise

Dafny: 2 for the price of 1

2 languages in Dafny. Their unique properties:

method example(a : array<int>)
modifies a
requires a != null && a.Length > 3
requires forall i : int :: 0 <= i < a.Length ==> a[i] > 0
ensures forall i : int :: 0 <= i < a.Length && i != 2 ==> a[i] == old(a[i])
ensures exists i : int :: 0 <= i < a.Length && a[i] == 42
{ a[2] := 42; }

Programming language

Assignments

While loops

Methods

Executed at runtime

Specification language

Quantifiers

Old values still available

Functions

Used only for checking, ignored at

runtime

Dafny: Syntax Example

method BSearch(a : array<int>, e : int) returns (r : int)
requires a != null && Sorted(a)
ensures if (exists i :: 0 <= i < a.Length && a[i] == elem)

then 0 <= r < a.Length && a[r] == elem else r < 0
{

var low, high := 0 , arr.Length;
while(low < high)
invariant 0 <= low <= high <= arr.Length
invariant forall i :: (0 <= i < low ||

high <= i < arr.Length) ==> arr[i] != elem
{

var mid := (low + high) / 2;
if e < a[mid] { high := mid; }
else if e > a[mid] { low := mid + 1; }
else { return mid; }

}
return -1;

}

Inside test

method abs(a : int) returns (r : int)
ensures r >= 0
{

if a < 0 {r := -a; }
else {r := a; }

}

method test(){
var r := abs(-3);
assert r == 3;

}

This is rejected by Dafny! Why?

Dafny only uses annotations (requires & ensures) of other methods to prove things.

Framing

Dafny requires you to state which

variables are:

● Read (for functions)

● Modified (for methods)

class Set{
var elems : array<int>;
var nr : int;

function nrFree() : int
requires elems != null
reads `nr, `elems
{ elems.Length - nr }

method addAll(Set other) {
modifies elems, `nr
...

}

var a = Set();
var b = Set();

a.add(1); a.add(2); a.add(3);
b.add(4); b.add(5);

// we know that b.nrFree() is the
// same before and after this
// statement
a.addAll(b);
// we also know 3 + 2 always
// gives the same, since + does
// not read anything

Efficiency

We know that a the value of an expression only

changes if:

Something is modified that the expression

reads

Dafny loops
method simpleInvariant(n : int) returns (m : int)
requires n >= 0
ensures n == m {
m := 0;
while m < n // <- this is called the loop guard
decreases (n - m)
invariant m <= n
{ m := m + 1; }

}

● Dafny cannot prove correctness of loops automatically (undecidable)

● Need: loop invariant

○ Holds after any number of iterations of the loop (including 0)

○ invariant should be useful (help to prove postcondition)

● For full correctness we also need termination

○ Need: loop variant (decreases clause)

■ Must always be >= 0

■ Must decrease after each iteration

● Formal verification

○ How does dafny prove?

○ Weakest precondition calculus & Correctness

○ Loop - Partial correctness

○ Loop - Total correctness

How dafny works

method m
requires Q
ensures R
{ S }

Big Logical Formula: Q => wp(S,R)

SMT Solver (Z3)

Yes, that formula is true, and hence program

is correct!
Not true or I don’t know, need more info

This logical formula is also called

the Verification condition

wp(S,R) = weakest precondition such that

postcondition R holds after executing

statements S

Check if precondition is at least as

strong as weakest precondition

Weakest precondition calculus (no loops)

wp({} , R) = R
wp(x := e , R) = R[x →e]
wp(S1 ; S2 , R) = wp(S1, wp(S2,R))
wp(assert B, R) = B && R
wp(if B {S1} else {S2}, R) =

(B ==> wp(S1,R)) &&
(!B ==> wp(S2,R))

Weakest precondition calculus (loops)

wp(while B { S }, R) =? not computable!
No algorithm can exist that always computes

wp(while B { S }, R) correctly!

Need: loop invariants & variants

wp(while B I D S, R) =
I
&& (B && I ==> wp(S,I))
&& (!B && I ==> R)

&& (I ==> D >= 0)
&& (B && I ==>

wp(tmp := D ; S, tmp > D))

Invariant holds before loop

If invariant holds before loop, then it also

hold afterwards

The failure of the loop guard (!B) and the

invariant imply the postcondition R

Decreases expression is always >= 0

Decreases expression decreases each iteration

Loop guard Loop

Invariant
Statements Post-condition

Decreases expression

Weakest precondition calculus (loops)

Partial correctness

Termination

Total correctness = partial correctness + termination

Testing debugging & Verification

How do we get some certainty that that your program does what it’s supposed to?

● Testing: Try out inputs, does what you want?

○ Input space partitioning

○ How do we know we have enough tests? Coverage criteria, mutation testing

○ Property based (trade man power for compute power)

● Debugging: what to do when things go wrong

○ 7 steps

○ Minimize example

○ Reason backwards

● Formal specification & Verification

○ Prove that there are no bugs

○ Express specification using logic

○ How do we check that: Weakest precondition calculus

● Lecture material (suggested additional readings when needed)

● Practice all exercises, labs

● Practice and go through sample exams

Testing debugging & Verification

All the best for your exam !!

