# Testing, Debugging, and Verification Formal Verification, Part I 

Srinivas Pinisetty ${ }^{1}$

29 November 2018
${ }^{1}$ Lecture slides based on material from Wolfgang Aherndt,..

## Recap: Functions and Predicates

- Method calls are not allowed in specifications.
- May have side effects - bad for proofs
- Functions and Predicates are allowed in specifications
- No side effects, cannot manipulate memory.
- Only allowed in specifications: Not present in compiled code only for verification.
- function method compiled, allowed both in code and specification.


## Recap: Loop Invariants and Variants

Loops are difficult to reason about.

- Don't know how many times we go around.
- But Dafny needs to consider all paths! How?


## Recap: Loop Invariants and Variants

Loops are difficult to reason about.

- Don't know how many times we go around.
- But Dafny needs to consider all paths! How?

Solution: Loop Invariants
An invariant is an property which is true before entering loop and after each execution of loop body.

## Recap: Loop Invariants and Variants

Loops are difficult to reason about.

- Don't know how many times we go around.
- But Dafny needs to consider all paths! How?

Solution: Loop Invariants
An invariant is an property which is true before entering loop and after each execution of loop body.

But what about termination?

## Recap: Loop Invariants and Variants

Loops are difficult to reason about.

- Don't know how many times we go around.
- But Dafny needs to consider all paths! How?

Solution: Loop Invariants
An invariant is an property which is true before entering loop and after each execution of loop body.

But what about termination?
Solution: Loop Variants
An variant is an expression which decrease with each iteration of the loop, and is bounded from below by 0 .
Dafny can often guess variants automatically.

## Formal Verification

- Three lectures.
- One assignment to hand in.

Todays main topics:

- Dafny behind the scenes: How does it prove programs correct?
- Weakest Precondition Calculus


## Formal Software Verification: Motivation

Limitations of Testing

- Testing ALL inputs is usually impossible.
- Even strongest coverage criteria cannot guarantee abcence of further defects.


## Formal Software Verification: Motivation

Limitations of Testing

- Testing ALL inputs is usually impossible.
- Even strongest coverage criteria cannot guarantee abcence of further defects.

Goal of Formal Verification
Given a formal specification $S$ of the behaviour of a program $P$ :
Give a mathematically rigorous proof that each run of $P$ conforms
to $S$
$P$ is correct with respect to $S$

## Formal Software Verification: Limitations

- No absolute notion of program correctness!
- Correctness always relative to a given specification
- Hard and expensive to develop provable formal specifications
- Some properties may be difficult or impossible to specify.
- Requires lots of expertise and expenses (so far...)
- Even fully specified \& verified programs can have runtime failures
- Defects in the compiler
- Defects in the runtime environment
- Defects in the hardware


## Formal Software Verification: Limitations

- No absolute notion of program correctness!
- Correctness always relative to a given specification
- Hard and expensive to develop provable formal specifications
- Some properties may be difficult or impossible to specify.
- Requires lots of expertise and expenses (so far...)
- Even fully specified \& verified programs can have runtime failures
- Defects in the compiler
- Defects in the runtime environment
- Defects in the hardware

Possible \& desirable:
Exclude defects in source code wrt. a given spec

## Dafny: Behind the Scenes

What happens when we ask Dafny to compile our program? How does it prove that it is correct according to its specification?

## Dafny: Behind the Scenes



## Dafny: Behind the Scenes



- Our focus: How do we extract verification conditions (Big Logical Formula)?
- This module: Weakest precondition calculus.
- Won't deal with full Dafny/Boogie, but simplified subset involving assignments, if-statements, while loops.


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
        S: program statements
    }
In literature, often expressed as a Hoare Triple: {Q} S {R}
```


## Hoare Triple: $\{Q\} S\{R\}$

```
If execution of program \(S\) starts in a state satisfying pre-condition
\(Q\), then it is guaranteed to terminate in a state satisfying the post-condition \(R\).
```


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
    }
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
    }
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,
- What is the least restricted (set of) state we could possibly begin from?


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
    }
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,
- What is the least restricted (set of) state we could possibly begin from?
- Weakest $=$ Fewest restrictions on input state.


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
    }
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,
- What is the least restricted (set of) state we could possibly begin from?
- Weakest $=$ Fewest restrictions on input state.
- Formally: $w p(S, R)$


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
    }
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,
- What is the least restricted (set of) state we could possibly begin from?
- Weakest $=$ Fewest restrictions on input state.
- Formally: $w p(S, R)$
- Does $Q$ satisfy at least these restrictions?


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
}
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,
- What is the least restricted (set of) state we could possibly begin from?
- Weakest $=$ Fewest restrictions on input state.
- Formally: $w p(S, R)$
- Does $Q$ satisfy at least these restrictions?
- i.e. does $Q$ imply the weakest pre-condition?


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
}
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,
- What is the least restricted (set of) state we could possibly begin from?
- Weakest $=$ Fewest restrictions on input state.
- Formally: $w p(S, R)$
- Does $Q$ satisfy at least these restrictions?
- i.e. does $Q$ imply the weakest pre-condition?
- To prove: $Q \rightarrow w p(S, R)$


## What do we Need to Prove and How?

```
method MyMethod(. . .)
    requires Q
    ensures R
    {
    S: program statements
}
```


## Weakest Precondition:

- Assuming that $R$ holds after executing $S$,
- What is the least restricted (set of) state we could possibly begin from?
- Weakest $=$ Fewest restrictions on input state.
- Formally: $w p(S, R)$
- Does $Q$ satisfy at least these restrictions?
- i.e. does $Q$ imply the weakest pre-condition?
- To prove: $Q \rightarrow w p(S, R)$
- Proving Hoare triple $\{Q\}$ S $\{R\}$ amounts to showing that $Q \rightarrow w p(S, R)$.


## What do we Need to Prove and How?



## Weakest Precondition

Weakest Precondition: wp $(S, R)$
The weakest precondition of a program $S$ and post-condition $R$ represents the set of all states such that execution of $S$ started in any of these is guaranteed to terminate in a state satisfying $R$.

## First-Order Formulas and Program States

First-order formulas define sets of program states
What do we mean by $w p(S, R)$ defining a set of program states? $w p(S, R)$ is a logical predicate $F$ that is true in some states and not true in others.

## First-Order Formulas and Program States

First-order formulas define sets of program states
What do we mean by $w p(S, R)$ defining a set of program states? $w p(S, R)$ is a logical predicate $F$ that is true in some states and not true in others.

Example

- ( $i>j$ \& $j>=0$ ) is true in exactly those states $S$ where $\mathrm{i}^{s}>\mathrm{j}^{s}$ and $\mathrm{j}^{s}$ is non-negative.
- exists i :: i == j
is true in any state $S$, because the value of $i$ can be chosen to be $j^{s}$


## Example

- Program statement $S$ : i := i + 1
- Post-condition R: i <= 1

What is the weakest precondition, $w p(S, R)$ ?

## Example

- Program statement $S$ : i := i + 1
- Post-condition $R$ : i <= 1

What is the weakest precondition, $w p(S, R)$ ?

- Reason backwards: $w p(i:=i+1, i<=1)=i<=0$


## Example

- Program statement S: i := i + 1
- Post-condition $R$ : i <= 1

What is the weakest precondition, $w p(S, R)$ ?

- Reason backwards: $w p(i:=i+1, i<=1)=i<=0$
- Executing i := i + 1 in any state satisfying i <= 0 will end in a state satisfying i <= 1 .


## Example

- Program statement $S$ : i := i + 1
- Post-condition R: i <= 1

What is the weakest precondition, $w p(S, R)$ ?

- Reason backwards: $w p(i:=i+1, i<=1)=i<=0$
- Executing i := i + 1 in any state satisfying i <= 0 will end in a state satisfying i <= 1 .
- Note: Taking $Q$ : i < -5 does also satisfy $R$. But overly restrictive, excludes initial states where -5 <= i <=0. Weakest precondition can help us find a suitable contract.


## Mini Quiz: Guess the Weakest Precondition

Write down $\operatorname{wp}(S, R)$ for the following $S$ and $R$ :

|  | $S$ | $R$ |
| :---: | :---: | :---: |
| a) | i := i+1 | i > 0 |
| b) | i := i+2; j := j-2 | i $+\mathrm{j}==0$ |
| c) | a[i] := 1 | a [i] == a[j] |
| d) | i := i+1; j := j-1 | $i * j=0$ |

## Mini Quiz: Guess the Weakest Precondition

Write down $\operatorname{wp}(S, R)$ for the following $S$ and $R$ :

|  | $S$ | $R$ |
| :---: | :---: | :---: |
| a) | i := i+1 | i > 0 |
| b) | i := i+2; j := j-2 | i $+\mathrm{j}==0$ |
| c) | a[i] := 1 | a [i] == a[j] |
| d) | i := i+1; j := j-1 | $i * j=0$ |

Solution:
a) i $>=0$
b) $i+j=0$
c) $a[j]==1$
d) $i==-1| | j==1$

## Weakest Precondition Calculus

Our Verification Algorithm

- Have a program $S$, with precondition $Q$ and postcondition $R$
- Compute wp $(S, R)$
- Prove that $Q \rightarrow w p(S, R)$

The rules of the weakest precondition calculus provide semantics, a logical meaning, for the statements in our programming language.

## Weakest Precondition Calculus

We will prove validity of programs written in a slightly simplified subset of Dafny/Boogie featuring:
Assignment: x := e
Sequentials: S1; S2
Assertions: assert B
If-statements: if B then S1 else S2
While-loops: while B S

## Weakest Precondition Calculus

```
We will prove validity of programs written in a slightly simplified subset of Dafny/Boogie featuring:
Assignment: \(\mathrm{x}:=\mathrm{e}\)
Sequentials: S1; S2
Assertions: assert B
If-statements: if B then S1 else S2
While-loops: while B S
```


## Semantics

We will define the weakest precondition for each of these program constructs.

## Weakest Precondition Calculus: Assignment

Assignment
$w p(x:=e, R)=R[x \mapsto e]$
Note: $R[x \mapsto e]$ means " $R$ with all occurrences of $x$ replaced by e".

Example
Let S :
i : $=$ i + 1;
Let $R$ : $i>0$

## Weakest Precondition Calculus: Assignment

Assignment
$w p(x:=e, R)=R[x \mapsto e]$
Note: $R[x \mapsto e]$ means " $R$ with all occurrences of $x$ replaced by e".

Example
Let S :
i := i + 1;
$w p(i:=i+1, i>0)=$

Let $R$ : $i>0$

## Weakest Precondition Calculus: Assignment

Assignment
$w p(x:=e, R)=R[x \mapsto e]$
Note: $R[x \mapsto e]$ means " $R$ with all occurrences of $x$ replaced by e".

Example
Let S :
i := i + 1;
$w p(i:=i+1, i>0)=$
(By Assignment rule)
Let $R$ : $i>0$
$i+1>0$

## Weakest Precondition Calculus: Sequential Composition

## Sequential Composition <br> $w p(S 1 ; S 2, R)=w p(S 1, w p(S 2, R))$

Example

Let S :
x := i;
i := i + 1;
Let $R: x<i$

## Weakest Precondition Calculus: Sequential Composition

$$
\begin{aligned}
& \text { Sequential Composition } \\
& w p(S 1 ; S 2, R)=w p(S 1, w p(S 2, R)) \\
& \text { Example } \\
& \qquad w p(x:=i ; i:=i+1, x<i)= \\
& \text { Let } \mathrm{S}: \\
& \mathrm{x}:=\mathrm{i} ; \\
& \mathrm{i}:=\mathrm{i}+1 \text {; } \\
& \text { Let } R: x<i
\end{aligned}
$$

## Weakest Precondition Calculus: Sequential Composition

## Sequential Composition <br> $w p(S 1 ; S 2, R)=w p(S 1, w p(S 2, R))$

Example

$$
w p(x:=i ; i:=i+1, x<i)=
$$

(By Sequential rule)
Let S :
wp $(x:=i, w p(i:=i+1, x<$
x := i;
i)) $=$
i := i + 1;
Let $R: x<i$

## Weakest Precondition Calculus: Sequential Composition

## Sequential Composition <br> $w p(S 1 ; S 2, R)=w p(S 1, w p(S 2, R))$

Example

$$
w p(x:=i ; i:=i+1, x<i)=
$$

(By Sequential rule)
Let S :
$w p(x:=i, w p(i:=i+1, x<$
x := i;
i := i + 1;
i)) $=$
(By Assignment rule)
$w p(x:=i, x<i+1)=$

## Weakest Precondition Calculus: Sequential Composition

## Sequential Composition <br> $w p(S 1 ; S 2, R)=w p(S 1, w p(S 2, R))$

Example

$$
w p(x:=i ; i:=i+1, x<i)=
$$

(By Sequential rule)
Let S :
wp $(x:=i, w p(i:=i+1, x<$
x := i;
i := i + 1;
Let $R: x<i$
i)) $=$
(By Assignment rule)
$w p(x:=i, x<i+1)=$
(By Assignment rule)
$i<i+1$
(trivially true)
This program satisfies its postcondition in any initial state.

## Weakest Precondition Calculus: Assertion

```
Assertion
\(w p(\) assert \(B, R)=B \wedge R\)
```

Example

Let S :
$\mathrm{x}:=\mathrm{y}$;
assert x > 0;
Let $R: x<20$

## Weakest Precondition Calculus: Assertion

## Assertion <br> wp $($ assert $B, R)=B \wedge R$

Example

$$
w p(x:=y ; \text { assert } x>0, x<20)=
$$

Let S :

$$
x:=y ;
$$

assert x > 0;

Let $R: x<20$

## Weakest Precondition Calculus: Assertion

## Assertion

$$
w p(\text { assert } B, R)=B \wedge R
$$

## Example

Let S :

$$
x \quad:=y ;
$$

assert x > 0;

Let $R: x<20$
$w p(x:=y$; assert $x>0, x<20)=$
(By Sequential rule)
$w p(x:=y, w p($ assert $x>0, x<20))=$

## Weakest Precondition Calculus: Assertion

## Assertion <br> $$
w p(\text { assert } B, R)=B \wedge R
$$

Example

Let S :

$$
x \quad:=y ;
$$

assert x > 0;

Let $R: x<20$
$w p(x:=y$; assert $x>0, x<20)=$
(By Sequential rule)
$w p(x:=y, w p($ assert $x>0, x<20))=$
(By Assertion rule)
$w p(x:=y, x>0 \wedge x<20)=$

## Weakest Precondition Calculus: Assertion

## Assertion <br> wp $($ assert $B, R)=B \wedge R$

Example

Let S :
$\mathrm{x}:=\mathrm{y}$;
assert x > 0;
Let $R: x<20$
$w p(x:=y$; assert $x>0, x<20)=$
(By Sequential rule)
$w p(x:=y, w p($ assert $x>0, x<20))=$
(By Assertion rule)
$w p(x:=y, x>0 \wedge x<20)=$
(By Assignment rule)

$$
y>0 \wedge y<20
$$

This program satisfies its postcondition in those initial states where y is a number between 1 and 19 (inclusive).

## Weakest Precondition Calculus: Conditional

## Conditional

$$
\begin{aligned}
& \text { wp (if } B \text { then S1 else S2, } R)= \\
& \quad(B \rightarrow w p(S 1, R)) \wedge(\neg B \rightarrow w p(S 2, R))
\end{aligned}
$$

Example
Let S :
if (i >= 0) then
x := i else x := -i
Abbreviate:
S1: x := i
S2: x := -i
Let $R: x \geq 0$

## Weakest Precondition Calculus: Conditional

## Conditional

wp (if $B$ then S1 else $S 2, R)=$ $(B \rightarrow w p(S 1, R)) \wedge(\neg B \rightarrow w p(S 2, R))$

Example
Let $S$ :
wp(if $(i \geq 0)$ then S1 else $S 2, x \geq 0)=$
if (i >= 0) then
$\mathrm{x}:=\mathrm{i}$ else $\mathrm{x}:=-\mathrm{i}$
Abbreviate:
S1: $\mathrm{x}:=\mathrm{i}$
S2: x := -i
Let $R: x \geq 0$

## Weakest Precondition Calculus: Conditional

## Conditional

wp (if $B$ then S1 else $S 2, R)=$ $(B \rightarrow w p(S 1, R)) \wedge(\neg B \rightarrow w p(S 2, R))$

Example

Let S :
if (i >= 0) then
x := i else x := -i
Abbreviate:
$w p($ if $(i \geq 0)$ then $S 1$ else $S 2, x \geq 0)=$
(By Conditional rule)

$$
\begin{aligned}
& i \geq 0 \rightarrow w p(x:=i, x \geq 0) \wedge \\
& \neg(i \geq 0) \rightarrow w p(x:=-i, x \geq 0)=
\end{aligned}
$$

S1: x := i
S2: x := -i
Let $R: x \geq 0$

## Weakest Precondition Calculus: Conditional

## Conditional

wp (if $B$ then S1 else $S 2, R)=$ $(B \rightarrow w p(S 1, R)) \wedge(\neg B \rightarrow w p(S 2, R))$

Example

Let S :
if (i >= 0) then

$$
\mathrm{x}:=\mathrm{i} \text { else } \mathrm{x} \text { := -i }
$$

Abbreviate:
S1: x := i
S2: x := -i
Let $R: x \geq 0$
$w p($ if $(i \geq 0)$ then $S 1$ else $S 2, x \geq 0)=$
(By Conditional rule)
$i \geq 0 \rightarrow w p(x:=i, x \geq 0) \wedge$
$\neg(i \geq 0) \rightarrow w p(x:=-i, x \geq 0)=$
(By Assignment rule)

$$
\begin{aligned}
& (i \geq 0 \rightarrow i \geq 0) \wedge(\neg(i \geq 0) \rightarrow-i \geq \\
& 0)=
\end{aligned}
$$

## Weakest Precondition Calculus: Conditional

## Conditional

wp (if $B$ then S1 else $S 2, R)=$ $(B \rightarrow w p(S 1, R)) \wedge(\neg B \rightarrow w p(S 2, R))$

Example

Let S :
if (i >= 0) then

$$
\mathrm{x} \text { := i else x := -i }
$$

Abbreviate:
S1: $\mathrm{x}:=\mathrm{i}$
S2: x := -i
Let $R: x \geq 0$
wp $($ if $(i \geq 0)$ then $S 1$ else $S 2, x \geq 0)=$
(By Conditional rule)
$i \geq 0 \rightarrow w p(x:=i, x \geq 0) \wedge$
$\neg(i \geq 0) \rightarrow w p(x:=-i, x \geq 0)=$
(By Assignment rule)
$(i \geq 0 \rightarrow i \geq 0) \wedge(\neg(i \geq 0) \rightarrow-i \geq$
$0)=$
true

This program satisfies its postcondition in any initial state.

## Weakest Precondition Calculus: Conditional

Conditional, empty else branch

$$
\text { wp }(\text { if } B \text { then } S 1, R)=(B \rightarrow w p(S 1, R)) \wedge(\neg B \rightarrow R)
$$

If else is empty, need to show that $R$ follows just from negated guard.

## Mini Quiz: Derive the weakest precondition

The Rules

$$
\begin{aligned}
& w p(x:=e, R)=R[x \mapsto e] \\
& w p(S 1 ; S 2, R)=w p(S 1, w p(S 2, R)) \\
& w p(\operatorname{sssert} B, R)=B \wedge R \\
& w p(\text { if } B \text { then } S 1 \text { else } S 2, R)= \\
& \quad(B \rightarrow w p(S 1, R)) \wedge(\neg B \rightarrow w p(S 2, R))
\end{aligned}
$$

Derive the weakest precondition, stating which rules you use in each step.

|  | $S$ | $R$ |
| :--- | :--- | :--- |
| a) | i $:=\mathrm{i}+2 ; \mathrm{j}:=\mathrm{j}-2$ | $\mathrm{i}+\mathrm{j}==0$ |
| $\mathrm{~b})$ | $\mathrm{i}:=\mathrm{i}+1 ;$ assert $\mathrm{i}>0$ | $\mathrm{i}<=0$ |
| c) | if isEven(x) then $\mathrm{y}:=\mathrm{x} / 2$ else $\mathrm{y}:=(\mathrm{x}-1) / 2$ | $\mathrm{isEven}(\mathrm{y})$ |

## Mini Quiz: Derive the weakest precondition

Solution:
a) $i+j==0$
(apply seq. rule followed by assignment rule, simplify)
b) $i+1>0$ \&\& $i+1<=0$
(apply seq rule, assert rule, assignment)
Simplifies to i => 0 \&\& i <= -1 which is false! No initial state can satisfy this postcondition.
c)
isEven(x) ==> isEven(x/2) \&\& !isEven(x) ==>
isEven ( $(x-1) / 2$ )
(apply cond. rule, followed by assignment.)

## Let's Prove ManyReturns Correct!

## Recall

To prove correct a program $S$ with precondition $Q$ and postcondition $R$ we need to show that $Q \rightarrow w p(S, R)$.

```
method ManyReturns(x:int, y:int) returns (more:int, less:
    int)
    requires 0 < y;
    ensures less < x < more;
    { more := x+y;
        less := x-y;
    }
```

Show that
$0<y \rightarrow w p$ (more : $=x+y$; less : $=x-y$, less $<x<$ more)

## Let's Prove ManyReturns Correct!

Show that
$0<y \rightarrow w p$ (more $:=x+y$; less : $=x-y$, less $<x<$ more)

## Let's Prove ManyReturns Correct!

Show that
$0<y \rightarrow w p$ (more : $=x+y$; less : $=x-y$, less $<x<$ more)
Seq. rule
$0<y \rightarrow w p($ more $:=x+y, w p($ less $:=x-y$, less $<x<$ more $))$

## Let's Prove ManyReturns Correct!

Show that
$0<y \rightarrow w p$ (more : $=x+y$; less : $=x-y$, less $<x<$ more)
Seq. rule
$0<y \rightarrow w p($ more $:=x+y, w p($ less $:=x-y$, less $<x<$ more $)$ ) Assignment rule $0<y \rightarrow w p$ (more : $=x+y, x-y<x<$ more)

## Let's Prove ManyReturns Correct!

Show that
$0<y \rightarrow w p$ (more : $=x+y$; less : $=x-y$, less $<x<$ more)
Seq. rule
$0<y \rightarrow w p($ more $:=x+y, w p($ less $:=x-y$, less $<x<$ more $)$ ) Assignment rule
$0<y \rightarrow w p$ (more : $=x+y, x-y<x<$ more)
Assignment rule
$0<y \rightarrow(x-y<x<x+y)$
which follows from the precondition by simple arithmetic.

## Let's Prove ManyReturns Correct!

Show that
$0<y \rightarrow w p$ (more : $=x+y$; less : $=x-y$, less $<x<$ more)
Seq. rule
$0<y \rightarrow w p($ more $:=x+y, w p($ less $:=x-y$, less $<x<$ more $)$ ) Assignment rule
$0<y \rightarrow w p$ (more : $=x+y, x-y<x<$ more)
Assignment rule
$0<y \rightarrow(x-y<x<x+y)$
which follows from the precondition by simple arithmetic.

## Hint

This level of detail is expected for your proofs in the lab and exam.

## Another Example

```
method f ( x : int) returns (y : int)
requires x > 8
ensures y > 10
{
y := x + 1;
if (y mod 2 == 0) { y := 100; }
    else { y := y + 2; }
}
```

Exercise: Prove $f$ correct
Show that
$x>8 \rightarrow w p(y:=x+1 ;$ if $\cdots, y>10)$.

## What Next?

## While loops!

## Difficulties of While Loops

- Need to "unwind" loop body one by one
- In general, no fixed loop bound known (depends on input)
- How the loop invariants and variants are used in proofs.


## Summary

- Testing cannot replace verification
- Formal verification can prove properties for all runs, ... but has inherent limitations, too.
- Dafny is compile to intermediate language Boogie.
- Verification conditions (VCs) extracted, using weakest precondition calculus rule.
- VCs are logical formulas, which can be passed to a theorem prover.
- Prove that precondition imply wp.

Reading: The Science of Programming by David Gries. Chapters 6-10, bearing in mind that the notation and language differ slightly from ours. Available as E-book from Chalmers library.

