
/GU

Testing, Debugging, and Verification
Formal Specification, Part I

Srinivas Pinisetty1

19 November 2018

1Lecture slides based on material from Wolfgang Aherndt,..

/GU

Where are we in the course?

— past course parts —
4 Testing
4 Debugging

— upcoming course parts —
I Formal Specification (starting today)
I Formal Program Verification (theory behind)
I Loop Invariant Generation

/GU

This Part

Formal Specification

Structure
I three lectures
I one exercise
I one hand-in lab assignment

/GU

Formal Specification: Contents

Content
I Why specification is important.
I Writing formal specifications: First Order Logic.
I Dafny: A programming language with support for automated

checking of formal specifications.
I Dafny supports automated checking of method pre- and

postconditions.
I Note: Focus is on writing good specifications, not so much

programming.
I With skills in Java, simple programming in Dafny is very

similar.

/GU

Motivation

As motivating examples, let’s consider two programs.

/GU

Example 1: method alwaysTrue()

// should always return true
public s t a t i c boolean alwaysTrue(int i) {

// Just ’return true;’ is all too boring
.
// Instead:
return (Math.abs(i) >= 0);

}

/GU

Example 1: Testing alwaysTrue()

Scanner sc = new Scanner(System.in);

while (true) {

// read an integer from System.in
int i = sc.nextInt ();

// this will print "true"
System.out.println(alwaysTrue(i));

}

Demo: TestAlwaysTrue.java

Surprise: with input -2147483648, the program prints false!

/GU

Example 1: Testing alwaysTrue()

Scanner sc = new Scanner(System.in);

while (true) {

// read an integer from System.in
int i = sc.nextInt ();

// this will print "true"
System.out.println(alwaysTrue(i));

}

Demo: TestAlwaysTrue.java

Surprise: with input -2147483648, the program prints false!

/GU

We want to understand the problem

I Another test:
System.out.println(Math.abs(-2147483648))
prints
-2147483648

I We cannot come any closer to the problem by
testing/debugging.

I So how can we?

/GU

Specification is the Answer!

From the Java API Specification, class Math:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative,
the negation of the argument is returned.

Note that if the argument is equal to the value of
Integer.MIN VALUE, the most negative representable int value,
the result is that same value, which is negative.

/GU

Specification is the Answer!

From the Java API Specification, class Math:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative,
the negation of the argument is returned.

Note that if the argument is equal to the value of
Integer.MIN VALUE, the most negative representable int value,
the result is that same value, which is negative.

/GU

Specification is the Answer!

From the Java API Specification, class Math:

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not
negative, the argument is returned. If the argument is negative,
the negation of the argument is returned.

Note that if the argument is equal to the value of
Integer.MIN VALUE, the most negative representable int value,
the result is that same value, which is negative.

/GU

Caller and Callee disagree

The problem was:

Caller (here alwaysTrue())
had unfulfilled expectations about

Callee (here Math.abs()).

/GU

Example 2: equal Objects in Sets

public c l a s s Book {

private String title;
private String author;
private long isbn;

public Book (...) { ... }
}

public boolean equals(Object obj) {
i f (obj instanceof Book) {

Book other = (Book) obj;
return (isbn == other.isbn);

}
return f a l s e ;

}

public String toString () { ... }
}

/GU

Example 2: equal Objects in Sets

From the Java API Specification, Interface Set:

public interface Set
extends Collection

Sets contain no pair of elements e1, e2 such that
e1.equals(e2) ...
...

boolean add(E e)

Adds e to this set if the set contains no element e2 such that
e.equals(e2) ...

/GU

Example 2: equal Objects in Sets

From the Java API Specification, Interface Set:

public interface Set
extends Collection

Sets contain no pair of elements e1, e2 such that
e1.equals(e2) ...
...

boolean add(E e)

Adds e to this set if the set contains no element e2 such that
e.equals(e2) ...

/GU

Example 2: equal Objects in Sets

Adding two equal books to a set:

Set <Book > catalogue = new HashSet <Book >();

Book b1 = new Book("Effective␣Java",
"Joshua␣Bloch",
201310058);

Book b2 = new Book("Effective␣Java",
"J.␣Bloch",
201310058);

catalogue.add(b1);
catalogue.add(b2);

How many elements has catalogue now?
Demo: AddTwoBooks.java

two!(?)

/GU

Example 2: equal Objects in Sets

Adding two equal books to a set:

Set <Book > catalogue = new HashSet <Book >();

Book b1 = new Book("Effective␣Java",
"Joshua␣Bloch",
201310058);

Book b2 = new Book("Effective␣Java",
"J.␣Bloch",
201310058);

catalogue.add(b1);
catalogue.add(b2);

How many elements has catalogue now?
Demo: AddTwoBooks.java

two!(?)

/GU

We want to understand the problem..

I Here, specification of Set or HashSet does not reveal problem
I Instead: check the specification of Book!
I Is there any?

I Yes, because Book extends Object, and inherits the
specifications from there!

/GU

We want to understand the problem..

I Here, specification of Set or HashSet does not reveal problem
I Instead: check the specification of Book!
I Is there any?
I Yes, because Book extends Object, and inherits the

specifications from there!

/GU

Checking the API of Object

public int hashCode()

...
If two objects are equal according to the equals(Object)
method, then calling the hashCode method on each of the two
objects must produce the same integer result.
...

By overriding equals only, and not hashCode, we broke the
specification of Book.hashCode().

/GU

Checking the API of Object

public int hashCode()

...
If two objects are equal according to the equals(Object)
method, then calling the hashCode method on each of the two
objects must produce the same integer result.
...

By overriding equals only, and not hashCode, we broke the
specification of Book.hashCode().

/GU

Caller and Callee disagree

The problem was:

Caller (here HashSet.add())
had unfulfilled expectations about
Callee (here Book.hashCode()).

Here:
The caller is library code, the callee is a method from our own
class!

/GU

Example1/2: Similarities and Differences

In both cases:
caller had unfulfilled expectations about callee

Difference: who is to blame?

Example 1: the caller (alwaysTrue())
Example 2: the callee (Book.hashCode())

/GU

Example1/2: Similarities and Differences

In both cases:
caller had unfulfilled expectations about callee

Difference: who is to blame?
Example 1: the caller (alwaysTrue())
Example 2: the callee (Book.hashCode())

/GU

Specifications as Contracts

To stress the different roles – obligations – responsibilities in a
specification:

Widely used analogy of the specification as a contract

“Design by Contract” methodology

Contract between caller and callee of method

callee guarantees certain outcome provided caller guarantees prerequisites

/GU

Specifications as Contracts

To stress the different roles – obligations – responsibilities in a
specification:

Widely used analogy of the specification as a contract

“Design by Contract” methodology

Contract between caller and callee of method

callee guarantees certain outcome provided caller guarantees prerequisites

/GU

Formal Specifications

Natural language specs are very important (see the examples
above).

Still:
we focus on

“Formal” specifications:
Describing contracts of units in a mathematically precise language.

Motivation:
I higher degree of precision.
I Automation of program analysis of various kinds:

I formal verification
I test case generation

/GU

Formal Specifications

Natural language specs are very important (see the examples
above).

Still:
we focus on

“Formal” specifications:
Describing contracts of units in a mathematically precise language.

Motivation:
I higher degree of precision.
I Automation of program analysis of various kinds:

I formal verification
I test case generation

/GU

A first glance at Dafny

I Object oriented, like Java.
I Designed to make it easy to write correct code.
I Write specification in formal language (annotations specifying

program behaviour).
I Automatically proves that the code matches annotations.
I Also proves absence of run time errors, e.g. null dereferencing,

index-out-of-bounds etc.
I We will look at Dafny in more detail in the coming lectures.

Knowledge about formal specification/verification is useful
(enables precise thinking), even if you will not regularly use
Isabelle/Dafny/Coq/etc.

/GU

Example: ATM.dfy

class ATM {

// fields:
var insertedCard : BankCard;
var wrongPINCounter : int;
var customerAuthenticated : bool;

// methods:
method insertCard (card : BankCard) { ... }
method enterPIN (pin : int) { ... }
...

}

/GU

Informal Specification

Very informal specification of ‘enterPIN (pin:int)’:

Enter the PIN that belongs to the currently inserted bank
card into the ATM. If a wrong PIN is entered three times
in a row, the card is invalidated and confiscated. After
having entered the correct PIN, the customer is regarded
as authenticated.

/GU

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.
enterPIN (pin:int)

precondition card is inserted, user not yet authenticated,

postcondition If pin is correct, then the user is authenticated

postcondition If pin is incorrect and wrongPINCounter < 2 then
wrongPINCounter is increased by 1 and
user is not authenticated

postcondition If pin is incorrect and wrongPINCounter >= 2
then card is confiscated and
user is not authenticated

Implicit preconditions in natural language spec: inserted card is not
null, the card is valid. Should also be formalised!

/GU

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.
enterPIN (pin:int)

precondition card is inserted, user not yet authenticated,

postcondition If pin is correct, then the user is authenticated

postcondition If pin is incorrect and wrongPINCounter < 2 then
wrongPINCounter is increased by 1 and
user is not authenticated

postcondition If pin is incorrect and wrongPINCounter >= 2
then card is confiscated and
user is not authenticated

Implicit preconditions in natural language spec: inserted card is not
null, the card is valid. Should also be formalised!

/GU

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.
enterPIN (pin:int)

precondition card is inserted, user not yet authenticated,

postcondition If pin is correct, then the user is authenticated

postcondition If pin is incorrect and wrongPINCounter < 2 then
wrongPINCounter is increased by 1 and
user is not authenticated

postcondition If pin is incorrect and wrongPINCounter >= 2
then card is confiscated and
user is not authenticated

Implicit preconditions in natural language spec: inserted card is not
null, the card is valid. Should also be formalised!

/GU

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.
enterPIN (pin:int)

precondition card is inserted, user not yet authenticated,

postcondition If pin is correct, then the user is authenticated

postcondition If pin is incorrect and wrongPINCounter < 2 then
wrongPINCounter is increased by 1 and
user is not authenticated

postcondition If pin is incorrect and wrongPINCounter >= 2
then card is confiscated and
user is not authenticated

Implicit preconditions in natural language spec: inserted card is not
null, the card is valid. Should also be formalised!

/GU

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.
enterPIN (pin:int)

precondition card is inserted, user not yet authenticated,

postcondition If pin is correct, then the user is authenticated

postcondition If pin is incorrect and wrongPINCounter < 2 then
wrongPINCounter is increased by 1 and
user is not authenticated

postcondition If pin is incorrect and wrongPINCounter >= 2
then card is confiscated and
user is not authenticated

Implicit preconditions in natural language spec: inserted card is not
null, the card is valid. Should also be formalised!

/GU

Getting More Precise: Specification as Contract

Contract states what is guaranteed under which conditions.
enterPIN (pin:int)

precondition card is inserted, user not yet authenticated,

postcondition If pin is correct, then the user is authenticated

postcondition If pin is incorrect and wrongPINCounter < 2 then
wrongPINCounter is increased by 1 and
user is not authenticated

postcondition If pin is incorrect and wrongPINCounter >= 2
then card is confiscated and
user is not authenticated

Implicit preconditions in natural language spec: inserted card is not
null, the card is valid. Should also be formalised!

/GU

Mini Quiz: Identifying pre- and postconditions
The method insertCard(card:BankCard) has the following
informal specification:

Inserts a bank card into the ATM if the card slot is free
and provided the card is valid.

I Identify at least two preconditions and at least one
postcondition.

I Optional: think of sensible additional ones, not mentioned
explicitly by the informal specification.

class ATM {
var insertedCard : BankCard;
var wrongPINCounter : int;
var customerAuthenticated : bool; . . .}

preconditions:
ATM card slot is free.
The card is valid.
(The card is not null)

postconditions:
The ATM card slot is occu-
pied.
(The user is not authenti-
cated.)
(wrongPINCounter is 0.)

/GU

Mini Quiz: Identifying pre- and postconditions
The method insertCard(card:BankCard) has the following
informal specification:

Inserts a bank card into the ATM if the card slot is free
and provided the card is valid.

I Identify at least two preconditions and at least one
postcondition.

I Optional: think of sensible additional ones, not mentioned
explicitly by the informal specification.

class ATM {
var insertedCard : BankCard;
var wrongPINCounter : int;
var customerAuthenticated : bool; . . .}

preconditions:
ATM card slot is free.
The card is valid.
(The card is not null)

postconditions:
The ATM card slot is occu-
pied.
(The user is not authenti-
cated.)
(wrongPINCounter is 0.)

/GU

Reflection

How do we express pre- and postconditions formally?
Need a formal language to express:
I Set of

I preconditions
I postconditions

I A language to express these conditions, capturing:
I relations, equality, logical connectives
I quantification

Before diving in to Dafny:
Pause and learn a bit about First Order Logic.

/GU

Recall: Propositional Logic
A propositional logic formula is built from
I Constants: true, false
I Boolean variables: P, Q, R... (atomic propositions)
I Connectives: ∧, ∨, ¬, →, ↔

Connective Meaning Dafny
¬P not P !P
P ∧ Q P and Q P && Q
P ∨ Q P or Q P || Q
P → Q P implies Q P ==> Q
P ↔ Q P is equivalent to Q P <==> Q

Example: ”If you are a bunny, then you eat carrots.”
P: You are a bunny.
Q: You eat carrots.

P → Q : ”If you are a bunny, then you eat carrots.”

/GU

Recall: Propositional Logic
A propositional logic formula is built from
I Constants: true, false
I Boolean variables: P, Q, R... (atomic propositions)
I Connectives: ∧, ∨, ¬, →, ↔

Connective Meaning Dafny
¬P not P !P
P ∧ Q P and Q P && Q
P ∨ Q P or Q P || Q
P → Q P implies Q P ==> Q
P ↔ Q P is equivalent to Q P <==> Q

Example: ”If you are a bunny, then you eat carrots.”
P: You are a bunny.
Q: You eat carrots.
P → Q : ”If you are a bunny, then you eat carrots.”

/GU

Recall: Propositional Logic

Truth table:

P Q P → Q
T T T
T F F
F T T
F F T

A formula F is:
I Satisfiable if F can be true.
I Valid if F is always true.

Exercise:
Draw the truth-table for ¬P ∨ Q. Do you notice anything
interesting?

/GU

Recall: Propositional Logic

Truth table:

P Q P → Q
T T T
T F F
F T T
F F T

A formula F is:
I Satisfiable if F can be true.
I Valid if F is always true.

Exercise:
Draw the truth-table for ¬P ∨ Q. Do you notice anything
interesting?

/GU

Recall: Propositional Logic

Truth table:

P Q P → Q
T T T
T F F
F T T
F F T

A formula F is:
I Satisfiable if F can be true.
I Valid if F is always true.

Exercise:
Draw the truth-table for ¬P ∨ Q. Do you notice anything
interesting?

/GU

Recall: Propositional Logic

Some tautologies
I ¬¬ϕ↔ ϕ

I ¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ
I ¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ
I · · ·

/GU

Propositional Satisfiability Problem (SAT Solver)

Given propositional logic formula, check whether it is satisfiable,
and return a solution if it is.

I Program that solves whether a formula F satisfiable.
I can be also used to check for validity of F (if ¬F is not

satisfiable).
I Try during exercise session !!

/GU

First-Order Logic (FOL)

Extends propositional logic by:
I Types, other than boolean

e.g. int, real, BankCard,
I Functions (mathematical)

e.g. +, max, abs, fibonacci,...
I Constants are functions with no arguments

e.g. 0, 1, fluffy
I Predicates (functions returning a boolean)

e.g. isEven, >, isPrime...
I Quantifiers

for all (∀), there exists (∃)

/GU

First Order Logic: Syntax

Terms

t ::= x |c|f (t1, · · · , tn)

x is any variable symbol, c is any constant, f is any function
symbol of some arity n.

Formulas
φ ::= P(t1, · · · , tn)

|(φ ∧ φ)|(φ ∨ φ)|(¬φ)| · · ·
|(∀x : φ)|(∃x : φ)

P is any predicate symbol of some arity n and ti are terms.

/GU

First Order Logic: Terms and Formulas

Terms are built from
I Functions
I Constants (functions with no arguments) and
I Variables
I E.g. x + 2, −5

Atomic formulas
I true, false
I Predicates
I E.g. x < y , isPrime(2), t1 = t2

FO Formulas are built recursively from atomic formulas and
boolean connectives. E.g.
I (x < y ∧ x = 4)→ 0 < (y − 4)
I ∀i : int. isEven(i)→ isOdd(i + 1)

/GU

First Order Logic: Terms and Formulas

Terms are built from
I Functions
I Constants (functions with no arguments) and
I Variables
I E.g. x + 2, −5

Atomic formulas
I true, false
I Predicates
I E.g. x < y , isPrime(2), t1 = t2

FO Formulas are built recursively from atomic formulas and
boolean connectives. E.g.
I (x < y ∧ x = 4)→ 0 < (y − 4)
I ∀i : int. isEven(i)→ isOdd(i + 1)

/GU

First Order Logic: Terms and Formulas

Terms are built from
I Functions
I Constants (functions with no arguments) and
I Variables
I E.g. x + 2, −5

Atomic formulas
I true, false
I Predicates
I E.g. x < y , isPrime(2), t1 = t2

FO Formulas are built recursively from atomic formulas and
boolean connectives. E.g.
I (x < y ∧ x = 4)→ 0 < (y − 4)
I ∀i : int. isEven(i)→ isOdd(i + 1)

/GU

Quantifiers

Connective Meaning/Dafny
∀x : t. P For all x of type t, P holds

In Dafny: forall x : t :: P

∃x : t. P There exist an x of type t such that P holds
In Dafny: exists x : t :: P

Example: All entries in the array a are greater than 0
∀i : int. 0 ≤ i < a.Length→ a[i] > 0

Example: There is at least one prime number in the array a
∃i : int. 0 ≤ i < a.Length ∧ isPrime(a[i])

/GU

Quantifiers

Connective Meaning/Dafny
∀x : t. P For all x of type t, P holds

In Dafny: forall x : t :: P
∃x : t. P There exist an x of type t such that P holds

In Dafny: exists x : t :: P

Example: All entries in the array a are greater than 0
∀i : int. 0 ≤ i < a.Length→ a[i] > 0

Example: There is at least one prime number in the array a
∃i : int. 0 ≤ i < a.Length ∧ isPrime(a[i])

/GU

Quantifiers

Connective Meaning/Dafny
∀x : t. P For all x of type t, P holds

In Dafny: forall x : t :: P
∃x : t. P There exist an x of type t such that P holds

In Dafny: exists x : t :: P

Example: All entries in the array a are greater than 0
∀i : int. 0 ≤ i < a.Length→ a[i] > 0

Example: There is at least one prime number in the array a
∃i : int. 0 ≤ i < a.Length ∧ isPrime(a[i])

/GU

Quantifiers

Connective Meaning/Dafny
∀x : t. P For all x of type t, P holds

In Dafny: forall x : t :: P
∃x : t. P There exist an x of type t such that P holds

In Dafny: exists x : t :: P

Example: All entries in the array a are greater than 0
∀i : int. 0 ≤ i < a.Length→ a[i] > 0

Example: There is at least one prime number in the array a
∃i : int. 0 ≤ i < a.Length ∧ isPrime(a[i])

/GU

Satisfiablity modulo theories + Quantifiers

I Semi-decidable problem (often gives good results).

/GU

Validity

A first order logic formula is valid if it is true in every
interpretation (however we interpret the functions and constants)

/GU

Valid Formulas

The following formulas are valid:
1. ¬(∃ x : t. φ)↔ ∀ x : t. ¬φ
2. ¬(∀ x : t. φ)↔ ∃ x : t. ¬φ
3. (∀ x : t. φ ∧ ψ)↔ (∀ x : t. φ) ∧ (∀ x : t. ψ)
4. (∃ x : t. φ ∨ ψ)↔ (∃ x : t φ) ∨ (∃ x : t. ψ)

Are the following formulas also valid?
I (∀ x : t. φ ∨ ψ)↔ (∀ x : t. φ) ∨ (∀ x : t. ψ)

I No! On the left, each x must make either φ or ψ true. On the
right, one of φ or ψ must hold for every x.

I (∃ x : t. φ ∧ ψ)↔ (∃ x : t. φ) ∧ (∃ x : t. ψ)

I No! On the left, must pick same x for φ and ψ. On the right,
might pick different x for φ and ψ.

/GU

Valid Formulas

The following formulas are valid:
1. ¬(∃ x : t. φ)↔ ∀ x : t. ¬φ
2. ¬(∀ x : t. φ)↔ ∃ x : t. ¬φ
3. (∀ x : t. φ ∧ ψ)↔ (∀ x : t. φ) ∧ (∀ x : t. ψ)
4. (∃ x : t. φ ∨ ψ)↔ (∃ x : t φ) ∨ (∃ x : t. ψ)

Are the following formulas also valid?
I (∀ x : t. φ ∨ ψ)↔ (∀ x : t. φ) ∨ (∀ x : t. ψ)

I No! On the left, each x must make either φ or ψ true. On the
right, one of φ or ψ must hold for every x.

I (∃ x : t. φ ∧ ψ)↔ (∃ x : t. φ) ∧ (∃ x : t. ψ)

I No! On the left, must pick same x for φ and ψ. On the right,
might pick different x for φ and ψ.

/GU

Valid Formulas

The following formulas are valid:
1. ¬(∃ x : t. φ)↔ ∀ x : t. ¬φ
2. ¬(∀ x : t. φ)↔ ∃ x : t. ¬φ
3. (∀ x : t. φ ∧ ψ)↔ (∀ x : t. φ) ∧ (∀ x : t. ψ)
4. (∃ x : t. φ ∨ ψ)↔ (∃ x : t φ) ∨ (∃ x : t. ψ)

Are the following formulas also valid?
I (∀ x : t. φ ∨ ψ)↔ (∀ x : t. φ) ∨ (∀ x : t. ψ)

I No! On the left, each x must make either φ or ψ true. On the
right, one of φ or ψ must hold for every x.

I (∃ x : t. φ ∧ ψ)↔ (∃ x : t. φ) ∧ (∃ x : t. ψ)

I No! On the left, must pick same x for φ and ψ. On the right,
might pick different x for φ and ψ.

/GU

Valid Formulas

The following formulas are valid:
1. ¬(∃ x : t. φ)↔ ∀ x : t. ¬φ
2. ¬(∀ x : t. φ)↔ ∃ x : t. ¬φ
3. (∀ x : t. φ ∧ ψ)↔ (∀ x : t. φ) ∧ (∀ x : t. ψ)
4. (∃ x : t. φ ∨ ψ)↔ (∃ x : t φ) ∨ (∃ x : t. ψ)

Are the following formulas also valid?
I (∀ x : t. φ ∨ ψ)↔ (∀ x : t. φ) ∨ (∀ x : t. ψ)

I No! On the left, each x must make either φ or ψ true. On the
right, one of φ or ψ must hold for every x.

I (∃ x : t. φ ∧ ψ)↔ (∃ x : t. φ) ∧ (∃ x : t. ψ)
I No! On the left, must pick same x for φ and ψ. On the right,

might pick different x for φ and ψ.

/GU

Formal Specification Examples

int[] sort(int[] a)
I requires: a 6= null
I ensures: isSorted(sort(a)) ∧ isPermutationOf(sort(a),a)

int binarySearch(int[] a,int elem)
I requires: a 6= null ∧ isSorted(a)
I ensures:

(result = -1 ∧ ∀ i : int, 0 ≤ i < a.length → a[i] 6= elem)
∨
(a[result] = elem ∧ ∀ i : int, 0 ≤ i < result → a[i] 6= elem)

/GU

Formal Specification Examples

int[] sort(int[] a)
I requires: a 6= null
I ensures: isSorted(sort(a)) ∧ isPermutationOf(sort(a),a)

int binarySearch(int[] a,int elem)
I requires: a 6= null ∧ isSorted(a)
I ensures:

(result = -1 ∧ ∀ i : int, 0 ≤ i < a.length → a[i] 6= elem)
∨
(a[result] = elem ∧ ∀ i : int, 0 ≤ i < result → a[i] 6= elem)

/GU

Today we learned...

I What design by contract is.
I Pre-conditions and post-conditions.
I Formal specification: what and why.
I First-order logic.

	Overview
	2 Motivating Examples
	Design By Contract
	Unit Specification
	Example: ATM
	Reflection
	Recap: Propositional Logic
	First-Order Logic (FOL)
	FO Signatures
	FO Terms
	Validity
	Summary

