

"Life is too short for imperative
programming”

John Hughes

Sorting in Haskell

sort [] = []
sort (x:xs) =
sort [y | yv <- xs, y<x]
++ [x]
++ sort [y | yv <- xs, y>=x]

Sorting in Pascal

{ Use quicksort to sort the array of integers. }
PROCEDURE Quicksort(size: Integer; VAR arr: IntArrType):;

{ This does the actual work of the quicksort. It takes the
parameters which define the range of the array to work on,
and references the array as a global. }

PROCEDURE QuicksortRecur(start, stop: integer):

VAE
m: integer:;

{ The location separating the high and low parts. }
splitpt: integer;

{ The quicksort split algorithm. Takes the range, and
returns the split point. }
FUNCTION Split(start, stop: integer): integer;
VAR
left, right: integer; { Scan pointers. }
pivot: integer; { Pivot wvalue. }

I Interchange the parameters. }
PROCEDURE swap (VAR a, b: integer);

VAR

t: integer;
BEGIN

t = a;

a := b;

b :=¢t

END;

Sorting in Pascal, page 2

BEGIN { Split }

END;

BEGIN {

{ 5et up the pointers for the hight and low sections,
get the pivot wvalue. }

pivot := arr[start]:;
left := start + 1;
right := stop;

{ Look for pairs out of place and swap 'em. }
WHILE left <= right DO BEGIN
WHILE (left <= stop) AND (arr[left] < pivot) DO
left := left + 1;
WHILE (right > start) BND (arr[right] >= piwvot) DO
right := right - 1;
IF left < right THEN

swap (arr[left], arrl[rightl]);
END;

{ Put the pivot between the halves. }
swap (arr[start], arr[right]);

{ This is how you return function walues in pascal.
Yeccch. }

Split := right

QuicksortRecur }

{ If there's anything to do... }
IF start < stop THEN BEGIN

splitpt := Split(start, stop):;

and

Sorting in Pascal, page 3

{ This is how you return function walues in pascal.
Yeccch. }
Split := right
END;

BEGIN { QuicksortRecur }

{ If there's anything to do... }
IF start < stop THEN BEGIN
splitpt := Split(start, stop);

QuicksortRecur (start, splitpt-1);
QuicksortRecur (splitpt+l, stop);
END
END;

BEGIN { Quicksort }
QuicksortRecur(l, size)
END;

Sorting in Java

private void quicksort(int low, int high) {
int 1 low, j = high;
int pivot = numbers[low + (high-low)/2];
while (i1 <= j) {
while (numbers[i] < pivot) {
i++;

while (numbers[j] > pivot) {
s Rl

if (i <= 3) |
exchange (i, j):
i++;
j-=7

Sorting in Java, page 2

if (low < j)
quicksort(low, 7j);
if (i < high)
quicksort (i, high) ;
}

private void exchange(int i, int jJj)
{
int temp = numbers[i];
numbers[i] = numbers|[j];
numbers[j] = temp;

Software Crisis, 1968—today

« Software project outcomes

[1 Cancelled

l >2x cost
overrun

I Success

In Large Companies

O Success W Failure

OImplemented feature B Not implemented

The Von Neumann Bottleneck

\N STﬂ\O CTron

GEOFFREY A. MOORE

Author of Inside the Tornado and Living on the Fault Line

A BusinessWeek Bestseller

s

: ‘
y
frll’ I

/
| “For the most astule companes this beok
(10 provides the Bluesrint for siccess; for
the others it1s 8 manual for thelr survval,
and forallitls a great read.."
~ilifam DiavIdew, general partner,
Mohr Davidow Ventures

MARKETING AND SELLING DISRUPTIVE

PRODUCTS TO MAINSTREAM CUSTOMERS

HarperBusiness Essentials

Technology adoption life cycle

N

Technology adoption life cycle

N

Technology adoption life cycle

Y
W’;{i ()\DS
c,\’\‘“g; |
)
OO
N NN >
3 %
%{\ Q‘i{%ﬁ E{c }(Gh 9:
S gy %
> % it

The Erlang Story

* 1986—Erlang emerges at Ericsson
— Functional language

— Extra support for concurrency & fault
tolerance

» Early 1990s—small products
* 1996

— Open Telecoms Platform (higher-order
functions for robust telecom systems)

— AXD 301 project starts

The AXD 301

ATM switch (telephone
backbone)

Born out of a failed
project!

1,5 MLOC Erlang
Seven nines reliability

4-10x better
productivity, quality

Erlang Story I

» 1998—Erlang banned for new projects
* 1998—C0pen source Erlang

* 1998—DBIluetall
— Jane Walerud VD
— Mail robustifier, Web prioritizer

SSL Accelerator

CONNECT TIMES

Alteon
isD2.0

CacheFlow
SA-725

B 10 file fmegesond faxf] [l 244E il (images ond i)
I 104 s ()

« Alteon WebSystems' SSL
Accelerator offers

phenomenal performance,
management and
scalabillity.

— Network Computing

grown to an ambitious and creativ

company of 500 employees.”
\fj@fg Savoice _
Y “We have been awarded Co

of the Year in -07, increased our tu
by 13 570 % and become the Nord:, ntrie
N market leader.”

QuviQ

* Founded May 2006
« Selling... QuickCheck!

— Key features:
« Simplifies failing tests
« Extensions for testing stateful systems

* Testing is a huge problem...

Media Proxy

* Multimedia IP-telephony (IMS)
 Connects calls across a firewall

» Test adding and removing callers from a
call

~ > 0
~ O g e
S es
s 'P' LY
— N \
; ' B
/!
2 N
s L) A

3G Radio Base Station

http://upload.wikimedia.org/wikipedia/commons/c/c5/Gsm-bts-walbrzych.jpg

Parts of the software tested by QuickCheck

AUT@_)‘ SAH AUTOMOTIVE OPEN SYSTEM ARCHITECTURE

GDM Services

Diagnostic
cluster

LIN

CAN

FIexFlay

Ethernet

3,000 pages of specifications
20,000 lines of QuickCheck

1 ,OO0,000 LOC, o suppliers
200 problems

100 problems in the standard

ICFP 2000...

QuickCheck:

A Lightweight Tool for Random Testing

Koen Claessen
Chalmers University of Technology

koen@cs.chalmers.se

ABSTRACT

QuickCheck is a tool which aids the Haskell programmer in
formulating and testing properties of programs. Properties
are deseribed as Haskell functions, and can be antomati-
cally tested on random input, but it s also possible to de-

fine custom test data generators. We present a number of

case studies, in which the tool was successfully used, and

also point out some pitfalls to avold. Handom testing 1s es
pecially suitable for functional programs becanse properties
can be stated at a fine grain. When a function s buitlt from
separately tested components, then random testing suffices
to obfain good coverage of the definition under test.

1. INTRODUCTION

Testing is by far the most commonly used approach to

ensunng software quals [t is also very labour intensive,

. - . r . . - »
accounting for up to H0% of the cost of software develop-

of Haskell Programs

John Hughes
Chalmers University of Technology

rimh@cs.chalmers.se

monad are hard to test|, and so testing can be done at a
fine grain.
A testing tool must be able to defermine whether a test

is passed or failed; the human tester must supply an anto-

matically checkable cnterion of doing so. We have chosen
to use formal specifications for this purpose. We have de-

signed a ample domain-specific language of fable apecifi-
cafions which the tester uses to define expected properties
of the functions under test. QuickCheck then checksthat the
properties hold in a large number of cases. The specifica-
tion language is emb edded in Haskell using the class system.
Properties are normally wntten in the same modnle as the
functions they test, where they serve also as checkable doe-
nmentation of the behaviour of the code.

A testing tool must also be able to generate test cases au-

tomatically.

v. We have chosen the simplest method, random
testing [11], which competes surprisingly favourably with

systematic methods in practice. However, it is meaningless

Most Influential ICFP

v !* Paper Award

Erlang in Ericsson

+ 1998—BANNED!

« 200/—Recommended for "complex state
machines with high performance
requirements”

» 2010—recruiting Erlang programmers in
Goteborg

CREDIT SUISSE

* Derivatives trading in New York

Option to buy |
for $100 anytime 10 g/lh';:gz()ft
In 2017
Option to se
or $10 in Nov 2016

Also in ICFP 2000...

Composing Contracts:
An Adventure in Financial Engineering

Functional pearl

Simon Peyton Jones
Microsoft Research, Cambridge
simonpj@microsoft.com

Abstract

Financial and insurance contracts do not sound like promis-
ing territory for functional programming and formal seman-
tics, but in fact we have discovered that insights from pro-
gramming languages bear directly on the complex subject
of deseribing and valuing a large class of contracts.

We Introduce a combinator library that allows us to de-
scribe such contracts precisely, and a compositional denota-
tional semantics that says what such contracts are worth.
We sketch an implementation of our combinator library in
Haskell. Interestingly, lazv evaluation plavs a crucial role.

1 Introduction

Consider the following financial contract, € the right to

choose on 30 June 2000 between

Jean-Marc Eber
LexiFi Te {'.hllulug_';iv. s, Paris
jeanmarc.eber@lexifi.com

Julian Seward
University of Glasgow
v-sewardj@microsoft.com

At this point, any red-blooded functional programmer
should start to foam at the mouth, velling “build a com-
binator library”. Andindeed, that turns out to be not only
possible but tremendously beneficial.

The finance industry has an enormous vocabulary of jargon
for tvpical combinations of financial contracts (swaps, fu-
tures, caps, floors, swaptions, spreads, straddles, captions,
European options, American options, ..the list goes on).
Treating each of these individually is like having a large
cat alogue of prefabricated components. The trouble is that
someone will soon want a contract that is not in the cata-
logue.

If instead, we could define each of these contracts using
a fixed, precisely-specified set of combinators, we would be
in a much better position than having a fixed catalogue.
For a start, it becomes much easler to deseribe new unfore-
seen, contracts. Bevondthat, we can syvstemaltically analyse,
and perform computalions over these new contracts, bec ause

- - - N -

Financial Contracts in Haskell

The option to acquire 10 Microsoft shares, for $100,
anytime

anytime :: Contract -> Contract

-—- Acquire the underlying contract at
-- any time before it expires (but

-- you must acquire it)

anytime:
Choose when

golden handcuff = anytime shares

shares = zero or (scaleK -100 (one Dollar) and’
scaleK 10 (one MSShare))

or: Choose
whether

New Approach
E3 Microsoft Excel - Project Economy [|(21)[56]

Haskell contract models

4

C++ plugins

File Edit Miew Insert Format Tools Data
Window Help Adobe PODF -3 X
Arial »10 » B 7T U = = }:
D=zE & @ =-2 (b3
prei-r i S
13 b B
C] E |
1 1SumOfBudget SumOfSpent SumOflncome
2 25 000.00 15,000.00 B0,000.00
3 24 000.00 80,000.00
4 1.000.00 0.0 oo *
o4 |4 F rﬁ_

CREDIT SUISSE

% BARCLAYS
CAPITAL

=
/i

Standard

Chartered

Bloomberg
oldman
acns

it

= JANE ST CAPITAL

ﬁsﬁ»\%

* "Functional programming on Wall Street”

— Proprietary trading, ~$13 billion/day

—>400 people, in New York, London, Hong
Kong, Amsterdam

— OCaml primary development language
— Hire summer interns every year

The Multicore Opportunity

' Quad-Core Processor .

|
LS
-

4 cores 100 cores

Intel CTO Justin Rattner

Sept 15, 2011, EETimes, keynote speech at Intel Developers' Forum

“The new software represents an effort to

bring to today's C++ programmers some of
the concepts of the emerging school called
functional programming. Functional

parallelism.”

Where are we?

Some popular functional

languages...
BT [o “docaml
ERLANG

Microsoft* ;
OO Visual F#

Some languages with lambda
expressions

C# — since 3.0 (2008)

C++ — since C++11

Rust

Java — since Java 8 (2014)

Visual Basic — since version 9 (2008)

Some high-profile applications

I I Servers programmed in Scala

"Functional reactive
NIETEL X programming” (with RxJava)

n Spam detection in Haskell

le Servers in Erlang

guTPUT ABOUT RESEARCH EDUCATION *PROJECTS

Top 100 Cryptocurrencies by Market
Capitalization

Rankings - Watchlist Usb t100 —

Name Price Change M. Cap Supply Volume

BTC

$ ETH 102,46 M

& usDT

BLOG

CAREERS

Some recent success stories

Swedish start-up using Erlang,
sold to Cisco for $175 million
in 2014

New Jersey e-commerce start-
up using F#, sold to Walmart
for $3.3 billion in 2016

Je

“So, we started building two solutions, a
C# solution and an F# solution, to see
where they would take us. In the end, we
chose to stick with the F# path. The main
reason is that we could deliver the same
functionality with far less code. This
clearly eases maintainability and
reduces bugs.”

G

—NMarie-France Han, Jet tech blog

Some recent success stories

Bay area start-up using

Mb Erlang, sold to Facebook for
$22 billion in 2014
?97°?

566 attendees

ICFE >45% from industry

hrefs @ Jane Street E

s ZMIRI Standard
"f'éﬂ;‘:;:f;*;yr‘.;;ﬁ;z:'t"' Chartered \

OO facebook

Strange Loop

SEPTEMBER 12-14 2019 / STIFEL THEATRE / ST.LOUIS, MO

Meet us in St. Louis, Sept 12-14th, 2019, to make connections with the creators and users of the languages, libraries, tools, and
techniques at the forefront of the industry.

Developer conference

2,200 attendees!

London, Scalallays N, York

--- I StOCkhOIm New York - June 19th-21st, 2018
W San Francisco

FACTORY

Berlin

YOW!

LAMBDA JAM

Sydney

-

/0% QCon San Francisco 2012

| —

= C [Y gconsf.com

L}‘i&] Den har sidan ar pa Vill du Gversatta den? lOverSEttl [Nejl

SAN FRANCISCO 2012

Tutorials: Nov 5-6 Confereénce: Nov 7-9

QCon San Francisco

2012

Speakers
Schedule
Tutcrials
Tracks
Sponscrs

Registration
Wolunteers

Venue
Travel
Hotels

Contact

Follow Us

in] "] &

qconsf, c_um_e'§f2012_e'

;j basho-logo.eps

3

(8] #:711 John Hughes, Co-designer of Haskell and QuickCheck

QCon San Francisco 2012

Tutorials: Nov. 5-6 / Conference: Nowv. 7-9

QCon is a practitioner-driven conference designed for team leads,
architectz and project managers. The program includes two tutorial
days led by over 80 industry experts and authors and three
conference days with 18 tracks and over 80 speakers covering a
wide variety of relevant and exciting topics in software development

trmdmre Thows in mo sdboe ~cant in the US with similar opportunities
1 tracking innovation occcurring in the
Y| M Glyptotek.jpg M

LY

Alternativ~|

QCon

International
SOFTWARE DEVELOPMENT

CONFERENCE

Wwui.gConst.com

Tracks at QCon SF 2012

Early Bird
Architectures yvou've always A
wondered about: How the Register before October 19
cool systems pull it off and save 200 § B
Big Data and Analytics:
Wresting actionable intelligence
from terrifyingly large data sets
Continuous Delivery: How to
release software on demand, Top 10 videos from QCon
and what happens next SF 2011

Cross Platform Mobile:
Celivering sophisticated mabile
applications with HTMLS and
cross-platform frameworks

Attila Szegedi:

"Everything I Ever
Learned about 1WM

Performance Tuning

Etwitter”

Dynamic Languages for the
Web: Using the expressivensss
and flexibility of dynamic
languages, to deliver cutting-
edge web apps

Rod John=on:
"Things I Wish I'd
User experience (UX):The Known
nitty-gritty on how great
products are designed

lava Renaissance: Java 7 and
& breathe new life into lava
ecosystem. Mo longer just safe
bet, cool too

Steve Souders:

"High Performance
HTMLS"

¥ Visa alla nedladdningar... ¥

If you'd like to see more...

@ Erlang Factroy SF 20 x

Google: .

John Hughes

Keynote iy 7 Why Functional
B - Programming Matters

John Hughes

It's the first hit.

(San Francisco 2016 or
Krakow 2017)

cHatmers QuviQ

Erlang Factroy SF 2016 - Keynote - John Hughes -
Why Functional Programming Matters

1 hour: watch when | © B=3- 10659 views
you have time

	Slide Number 1
	”Life is too short for imperative programming”
	Sorting in Haskell
	Sorting in Pascal
	Sorting in Pascal, page 2
	Sorting in Pascal, page 3
	Sorting in Java
	Sorting in Java, page 2
	Software Crisis, 1968—today
	In Large Companies
	The Von Neumann Bottleneck
	Slide Number 12
	Technology adoption life cycle
	Technology adoption life cycle
	Technology adoption life cycle
	The Erlang Story
	The AXD 301
	Erlang Story II
	SSL Accelerator
	Slide Number 20
	Slide Number 21
	Media Proxy
	3G Radio Base Station
	Slide Number 25
	Slide Number 26
	Slide Number 27
	ICFP 2000...
	Most Influential ICFP Paper Award
	Erlang in Ericsson
	Slide Number 31
	Also in ICFP 2000...
	Financial Contracts in Haskell
	New Approach
	Slide Number 35
	The Multicore Opportunity
	Intel CTO Justin Rattner
	Slide Number 38
	Where are we?
	Some popular functional languages…
	Some languages with lambda expressions
	Some high-profile applications
	Slide Number 46
	Some recent success stories
	Slide Number 48
	Some recent success stories
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 54
	If you’d like to see more…

