
F4 1/3 övning på komplexitet
Snabb rep.
Definition:
The complexity of an algorithm is the
“cost” to use the algorithm to solve a
problem.

Theoretica complexity
4. The size of the problem
 (e.g. nbr of inputs).
5. The nature of input (sorted/unsorted).
6. Time complexity of the algorithm itself,
 of the method chosen.

We will measure the amount of work the
algorithm does in terms of “elementary
operations”.
They are assumed to require one time unit
Complexity is a relative concept, only
interesting together with the corresponding
elementary operation.

F3 Complexity 1

Definition: logarithmic cost criteria
Let T(n) denote the complexity for an
algorithm that is applied to a problem of
size n.
The size (n in T(n)) of a problem instance
(I) is the number of (binary) bits used to
represent the instance.

Uniform cost criteria: … you can use the
number of inputs as problem size since the
length of input (in bits) will be a constant
times the number of inputs.
Example:
bigProblemToSolve(x1, x2, x3, …, xn) {...}
Inputs are x1, x2, x3, …, xn
Then the size of the problem is
log(x1) + log(x2) + log(x3) + … + log(xn)
this is ≤ n*log(max(xi))
and log(max(xi)) is a constant ≤ log(int.max)
so ≤ n * k

F3 Complexity 2

Asymptotic order of growth rate and Big O
Small n is not interesting!
The growth rate of complexity e.g. what
happens when n is big, or when we double or

”Big O”. (Ordo of f, “big O” of f, order of f)
O(f(n)) = {t: …. = t <= c * f(n)
T(n) is O(f(n)) if there exists constants
c>0 and n0≥0 so that for all n≥n0, we have
T(n) ≤ c*f(n).
We write T(n) ∈ O(f(n)).

We usually use the worst case as a measure
of complexity.
Sometimes average complexity.
And sometimes amortized complexity.

F3 Complexity 3

Strategy for complexity
calculations, quick rep.

1) Set up the requirements, principally which
elementary operations (EO) you use
i.e. what cost are you calculating.
(and possibly what you are NOT counting)
2) Set up the formula for the complexity
rather exactly (mathematically correct) and
motivate carefully what you do.
 3) Solve the formula
thinking about what the result is going to be
used for.
Always motivate what you do for instance
like this:

(... is the formula that you are working with)
.... = {divide everywhere with 4}
.... = {use formula for geometric sum}
.... = and so on

F3 Complexity 4

Recursive functions

function fac(n:integer) return integer
if n <= 1 then

return 1
else

return n*fac(n-1)
end if

end fac

If the call to fac(n) take T(n), then the call
to
fac(n-1) should take T(n-1). So we get

Tn  = {c1 if n=1
Tn−1c2 n1

whose solution is O(n).

Solving recursion equations
means that we try to express them in closed
form, i.e without T(...) terms on the right
hand side.

F3 Complexity 5

Mergesort is a famous sorting algorithm
vektor mergesort (v:vektor; n:integer)

// v is an array of length n
if n = 1 then

return v
else

split v in two halfs v1 och v2,
with length n/2

return merge(mergesort(v1, n/2),
mergesort(v2, n/2))

end if
end mergesort

Merge takes two sorted arrays and merges
these with one another to a sorted list. If
T(n) is the wc-time and we assume n is a
power of 2, we get:

Tn  = {c1 if n=1
2Tn /2c2 n if n1

The first “2” is the number of subsolutions
and n/2 is the size of the subsolutions
c2n is the test to discover that n!=1, (O(1)), to
break the list in two parts (O(1)) and to
merge them (O(n)). The solution is O(nlogn)

F3 Complexity 6

Problem 1. Analysera Selectionsort
st void swap(int[] f), int x, int y {

int tmp = f[x];
f[x] = f[y];
f[y] = tmp;

}
1. st void selectionSort(int[] f) {
2. int lowIndex = 0;
3. for (int slot2fill = 0;
4. slot2fill < f.length-1;
5. slot2fill++) {

//slot2fill står i tur att ordnas
6. lowIndex = slot2fill; // minst
7. for (int j = slot2fill+1;
8. j < f.length;
9. j++) {
10. if (f[j]<f[lowIndex]){
11. lowIndex = j;

}
}

12. if (lowIndex != slot2fill) {
13. swap(lowIndex,slot2fill, f);

}
}

}

F3 Complexity 7

Problem 2
Lös
T(1) = 2
T(n) = T(n-1) + 2

Problem 3
Lös
T(n) = {if n=1 then c1 else 2T(n/2) + c2n}

F3 Complexity 8

Problem 4
Suppose you have algorithms with the six
running times listed below. (Assume these are
the exact running times.)
How much slower do each of these algorithms
get when you
(a) increase the input size by one
or
(b) double the input size?
(i) n2

(ii) n3

(iii) 100n2
(iv) logn
(v) n log n
(vi) 2n

F3 Complexity 9

Problem 5
Logaritm lagar man bör kunna
(alla är inte individuella lagar)

y =a x ⇒ x = logya = logyb

logab = logba ⋅ logyb

a lognb

=n logab

logaa =1, log1a =0

log ax=x⋅log a in particular loga ax= x

log x⋅y= logx log y log
x
y = logx− logy

ax⋅ay=axy ax⋅bx=a⋅bx

axy=ax⋅y in particular 22i=22i=2i2

F3 Complexity 10

Problem 6
Några komplexitetsfunktioner som är bra att
kunna:
T(n/2) + c ∈ O(logn)
T(n/2) + clogn ∈ O(logn)2

T(n/2) + cn ∈ O(n)
T(n/2) + n2 ∈ O(n2)
2T(n/2) + c ∈ O(n)
2T(n/2) + clogn ∈ O(n)
2T(n/2) + cn ∈ O(nlogn)
2T(n/2) + cnlogn ∈ O(n(logn)2)

T(n-1) + c ∈ O(n)
T(n-1) + clogn ∈ O(nlogn)
T(n-1) + cn ∈ O(n2)
T(n-1) + cnlogn ∈ O(n2logn)
2T(n-1) + c ∈ O(2n)

F3 Complexity 11

Problem
 7 Sum

m
or m

an bör kunna

 a)
∑i=

1 n

1
=

n
 b)

∑i=
1 n

i=
n

n


1


2

 c)

∑i=
1 n

i 2=
n

n


12n


1
6

∈
O

n
3

 d)

∑i=
1 n

i k∈
O

n
k


1

 e)

∑i=
0

n

a⋅x
i=

a⋅ x
n

−
1−

1
 x

−
1

,x
!=

1
 f)

∑i
=

0

n

2
i

=
2

n
+

1−
1

 g)

∑i
=

0

n

i⋅x
i∈

O
(nx

n
+

2)

 h)

∑i
=

0

n

i⋅2
i∈

O
(n

⋅2
n

+
2)

 i)
∑i=

1 n
1i

≈
lnn

 j)

∑i=
2 n

logi∈
O

nlogn


 k)

∑i=
2 n

i⋅logi∈
O

n
2logn


 l)

∑i=
k p

1
=

p−
k

1

∑
i

c⋅i=
c⋅∑

i
i

∑i=
c n

i=
∑i=

0

n
−

ci
c

∑i=
1 n

a
i 

b
i =

∑i=
1

n

a
i 

∑i=
1

n

b
i

∑i=
0 n

n
−

i=
∑i=

0 n

i12

