
F4 1/3 övning på komplexitet  
Snabb rep.
Definition: 
The complexity of an algorithm is the 
“cost” to use the algorithm to solve a 
problem. 

Theoretica complexity
4. The size of the problem 
   (e.g. nbr of inputs).
5. The nature of input (sorted/unsorted).
6. Time complexity of the algorithm itself, 
 of the method chosen.

We will measure the amount of work the 
algorithm does in terms of “elementary 
operations”.
They are assumed to require one time unit 
Complexity is a relative concept, only 
interesting together with the corresponding 
elementary operation.
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Definition: logarithmic cost criteria
Let T(n) denote the complexity for an 
algorithm that is applied to a problem of 
size n.
The size (n in T(n)) of a problem instance 
(I) is the number of (binary) bits used to 
represent the instance. 

Uniform cost criteria: … you can use the 
number of inputs as problem size since the 
length of input (in bits) will be a constant 
times the number of inputs.
Example: 
bigProblemToSolve(x1, x2, x3, …, xn) {...}
Inputs are x1, x2, x3, …, xn 
Then the size of the problem is
log(x1) + log(x2) + log(x3) + … + log(xn) 
this is ≤ n*log(max(xi)) 
and log(max(xi)) is a constant ≤ log(int.max)
so ≤ n * k
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Asymptotic order of growth rate and Big O
Small n is not interesting!
The growth rate of complexity e.g. what 
happens when n is big, or when we double or 

”Big O”. (Ordo of f, “big O” of f, order of f)
O(f(n)) = {t: …. = t <= c * f(n)
T(n) is O(f(n)) if there exists constants 
c>0 and n0≥0 so that for all n≥n0, we have 
T(n) ≤ c*f(n).
We write T(n) ∈ O(f(n)).

We usually use the worst case as a measure 
of complexity.
Sometimes average complexity.
And sometimes amortized complexity.
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Strategy for complexity
calculations, quick rep.

1) Set up the requirements, principally which
elementary operations (EO) you use 
i.e. what cost are you calculating.
(and possibly what you are NOT counting)
2) Set up the formula for the complexity 
rather exactly (mathematically correct) and 
motivate carefully what you do.
 3) Solve the formula 
thinking about what the result is going to be 
used for.
Always motivate what you do for instance 
like this: 

(... is the formula that you are working with)
.... = {divide everywhere with 4}
.... = {use formula for geometric sum}
.... = and so on
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Recursive functions

function fac(n:integer) return integer
if n <= 1 then

return 1
else

return n*fac(n-1)
end if

end fac

If the call to fac(n) take T(n), then the call 
to
fac(n-1) should take T(n-1). So we get

Tn  = {c1 if n=1
Tn−1c2 n1

whose solution is O(n).

Solving recursion equations
means that we try to express them in closed 
form, i.e without T(...) terms on the right 
hand side.
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Mergesort is a famous sorting algorithm
vektor mergesort (v:vektor; n:integer)

// v is an array of length n
if n = 1 then

return v
else

split v in two halfs v1 och v2,
with length n/2

return merge(mergesort(v1, n/2),
mergesort(v2, n/2))

end if
end mergesort

Merge takes two sorted arrays and merges 
these with one another to a sorted list. If 
T(n) is the wc-time and we assume n is a 
power of 2, we get:

Tn  = {c1 if n=1
2Tn /2c2 n if n1

The first “2” is the number of subsolutions 
and n/2 is the size of the subsolutions 
c2n is the test to discover that n!=1, (O(1)), to 
break the list in two parts (O(1)) and to 
merge them (O(n)). The solution is O(nlogn) 
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Problem 1. Analysera Selectionsort
st void swap(int[] f), int x, int y {

int tmp = f[x];
f[x] = f[y];
f[y] = tmp;

}
1. st void selectionSort(int[] f) {
2. int lowIndex = 0;
3. for (int slot2fill = 0;
4. slot2fill < f.length-1;
5. slot2fill++) {

//slot2fill står i tur att ordnas
6. lowIndex = slot2fill; // minst
7. for (int j = slot2fill+1;
8. j < f.length;
9. j++) {
10. if (f[j]<f[lowIndex]){
11. lowIndex = j;

}
}

12. if (lowIndex != slot2fill) {
13. swap(lowIndex,slot2fill, f);

}
}

}  
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Problem 2
Lös 
T(1) = 2
T(n) = T(n-1) + 2

Problem 3
Lös 
T(n) = {if n=1 then c1 else 2T(n/2) + c2n}
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Problem 4
Suppose you have algorithms with the six 
running times listed below. (Assume these are 
the exact running times.) 
How much slower do each of these algorithms 
get when you 
(a) increase the input size by one 
or
(b) double the input size?
(i) n2

(ii) n3

(iii) 100n2    
(iv) logn
(v) n log n
(vi) 2n
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Problem 5
Logaritm lagar man bör kunna
(alla är inte individuella lagar)

y =a x ⇒ x = logya = logyb

logab = logba ⋅ logyb

a lognb

=n logab

logaa =1, log1a =0

log ax=x⋅log a   in particular loga ax= x

log x⋅y= logx log y     log
x
y = logx− logy

ax⋅ay=axy     ax⋅bx=a⋅bx

axy=ax⋅y    in particular 22i=22i=2i2
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Problem 6
Några komplexitetsfunktioner som är bra att 
kunna:
T(n/2) + c        ∈ O(logn)
T(n/2) + clogn   ∈ O(logn)2

T(n/2) + cn       ∈ O(n)
T(n/2) + n2        ∈ O(n2)
2T(n/2) + c       ∈ O(n)
2T(n/2) + clogn  ∈ O(n)
2T(n/2) + cn      ∈ O(nlogn)
2T(n/2) + cnlogn ∈ O(n(logn)2)

T(n-1) + c       ∈ O(n)
T(n-1) + clogn  ∈ O(nlogn)
T(n-1) + cn      ∈ O(n2)
T(n-1) + cnlogn ∈ O(n2logn)
2T(n-1) + c      ∈ O(2n)
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