Intersection Testing

Department of Computer Engineering
Chalmers University of Technology

What for?

- A tool needed for the graphics people all the time...
- Very important components:
- Need to make them fast!
- Finding if (and where) a ray hits an object
- Picking
- Ray tracing and global illumination
- For speed-up techniques
- Collision detection (treated in a later lecture)

Example

Midtown Madness 3, DICE

Some basic geometrical primitives

- Ray:
- Sphere:
- Box
- Axis-aligned (AABB)
- Oriented (OBB)

- k-DOP

Four different techniques

- Analytical
- Geometrical
- Separating axis theorem (SAT)
- Dynamic tests
- Given these, one can derive many tests quite easily
- However, often tricks are needed to make them fast

Analytical: Ray/sphere test

- Sphere center: c, and radius r
- Ray: $\mathbf{r}(t)=\mathbf{0}+t \mathbf{d}$
- Sphere formula: $\|$ pec $\|=r$
- Replace \mathbf{p} by $\mathbf{r}(t)$, and square it:

$$
\begin{aligned}
& (\mathbf{r}(t)-\mathbf{c}) \cdot(\mathbf{r}(t)-\mathbf{c})-r^{2}=0 \\
& (\mathbf{0}+t \mathbf{d}-\mathbf{c}) \cdot(\mathbf{0}+t \mathbf{d}-\mathbf{c})-r^{2}=0
\end{aligned}
$$

$$
(t \mathbf{d}+(\mathbf{o}-\mathbf{c})) \cdot(t \mathbf{d}+(\mathbf{o}-\mathbf{c}))-r^{2}=0
$$

$$
(\mathbf{d} \cdot \mathbf{d}) t^{2}+2((\mathbf{0}-\mathbf{c}) \cdot \mathbf{d}) t+(\mathbf{o}-\mathbf{c}) \cdot(\mathbf{0}-\mathbf{c})-r^{2}=0
$$

$$
t^{2}+2((\mathbf{0}-\mathbf{c}) \cdot \mathbf{d}) t+(\mathbf{0}-\mathbf{c}) \cdot(\mathbf{0}-\mathbf{c})-r^{2}=0 \quad\|\mathbf{d}\|=1
$$

Analytical, continued

- Such tests are called "rejection tests"
- Other shapes: $p_{x}^{2}+p_{y}^{2}=r^{2}$
$\left(p_{x} / a\right)^{2}+\left(p_{y} / b\right)^{2}+\left(p_{z} / c\right)^{2}=1$
$\left(p_{x} / a\right)^{2}+\left(p_{y} / b\right)^{2}-p_{z}=0$

Geometrical: Ray/Box Intersection

- Boxes and spheres often used as bounding volumes
- A slab is the volume between two parallell planes:
- A box is the logical intersection of three slabs (2 in 2D):

Geometrical: Ray/Box Intersection (2)

- Intersect the 2 planes of each slab with the ray

- Keep max of $t^{\text {min }}$ and min of $t^{\text {max }}$
- If $t^{m i n}<t^{m a x}$ then we got an intersection
- Special case when ray parallell to slab

Separating Axis Theorem (SAT) Page 563 in book

- Two convex polyhedrons, A and B , are disjoint if any of the following axes separate the objects:
- An axis orthogonal to a face of A
- An axis orthogonal to a face of B
- An axis formed from the cross product of one edge from each of A and B

A and B overlaps on this axis

SAT example: Triangle/Box

- E.g an axis-aligned box and a triangle
- 1) test the axes that are orthogonal to the faces of the box
- That is, x, y, and z

Triangle/Box with SAT (2)

- Assume that they overlapped on x, y, z
- Must continue testing
- 2) Axis orthogonal to face of triangle

Triangle/Box with SAT (3)

- If still no separating axis has been found...
- 3) Test axis: $\mathbf{t}=\mathrm{e}_{\text {box }} \times \mathrm{e}_{\text {triangle }}$
- Example:
- x-axis from box: $\mathrm{e}_{\text {box }}=(1,0,0)$
$-\mathbf{e}_{\text {triangle }}=\mathbf{v}_{1}-\mathbf{v}_{0}$
- Test all such combinations
- If there is at least one separating axis, then the objects do not collide
- Else they do overlap

Rules of Thumb for Intersection Testing

- Acceptance and rejection test
- Try them early on to make a fast exit
- Postpone expensive calculations if possible
- Use dimension reduction
- E.g. 3 one-dimensional tests instead of one complex 3D test, or 2D instead of 3D
- Share computations between objects if possible
- Timing!

Another analytical example: Ray/Triangle in detail

- Ray: $\mathbf{r}(t)=\mathbf{0}+t \mathbf{d}$
- Triangle vertices: $\mathbf{v}_{0}, \mathbf{v}_{1}, \mathbf{v}_{2}$
- A point in the triangle:
- $\mathbf{t}(u, v)=\mathbf{v}_{0}+u\left(\mathbf{v}_{1}-\mathbf{v}_{0}\right)+v\left(\mathbf{v}_{2}-\mathbf{v}_{0}\right)=$

$=(1-u-v) \mathbf{v}_{0}+u \mathbf{v}_{1}+v \mathbf{v}_{2} \quad[u, v>=0, u+v<=1]$
- Set $\mathbf{t}(u, v)=\mathbf{r}(t)$, and solve!

Ray/Triangle (1)

$\left(\begin{array}{ccc}\mid & \mid & \mid \\ -\mathbf{d} & \mathbf{v}_{1}-\mathbf{v}_{0} & \mathbf{v}_{2}-\mathbf{v}_{0} \\ \mid & \mid & \mid\end{array}\right)\left(\begin{array}{l}t \\ u \\ v\end{array}\right)=\left(\begin{array}{c}\mid \\ \mathbf{o}-\mathbf{v}_{0} \\ \mid\end{array}\right)$

- Solve for t, u, v using Cramer's rule for a system of n linear equations with n unknowns: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
Cramer's rule:
$\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}j \\ k \\ l\end{array}\right] \Rightarrow x=\frac{\left|\begin{array}{lll}j & b & c \\ k & e & f \\ l & h & i\end{array}\right|}{\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|}$,

$$
y=\frac{\left|\begin{array}{c|c|c}
a & j & c \\
d & k & f \\
g & l & i
\end{array}\right|}{\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|},
$$

$=\frac{\left|\begin{array}{ll|c}a & b & j \\ d & e & k \\ g & h & l\end{array}\right|}{\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|}$

Simplify our equation system by setting:

$$
\mathbf{e}_{1}=\mathbf{v}_{1}-\mathbf{v}_{0} \quad \mathbf{e}_{2}=\mathbf{v}_{2}-\mathbf{v}_{0} \quad \mathbf{s}=\mathbf{o}-\mathbf{v}_{0} \quad \Rightarrow\left(\begin{array}{ccc}
-\mathbf{d} & \mathbf{e}_{1} & \mathbf{e}_{2} \\
\mathrm{l} & \mathrm{l} & \mathrm{I}
\end{array}\right)\binom{u}{v}=\binom{\mathbf{s}}{1}
$$

Cramer's rule gives: $\left(\begin{array}{l}t \\ u \\ v\end{array}\right)=\frac{1}{\operatorname{det}\left(-\mathbf{d}, \mathbf{e}_{1}, \mathbf{e}_{2}\right)}\left(\begin{array}{c}\operatorname{det}\left(\mathbf{s}, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \\ \operatorname{det}\left(-\mathbf{d}, \mathbf{s}, \mathbf{e}_{2}\right) \\ \operatorname{det}\left(-\mathbf{d}, \mathbf{e}_{1}, \mathbf{s}\right)\end{array}\right)$

Ray/Triangle (2)

$$
\left(\begin{array}{c}
t \\
u \\
v
\end{array}\right)=\frac{1}{\operatorname{det}\left(-\mathbf{d}, \mathbf{e}_{1}, \mathbf{e}_{2}\right)}\left(\begin{array}{c}
\operatorname{det}\left(\mathbf{s}, \mathbf{e}_{1}, \mathbf{e}_{2}\right) \\
\operatorname{det}\left(-\mathbf{d}, \mathbf{s}, \mathbf{e}_{2}\right) \\
\operatorname{det}\left(-\mathbf{d}, \mathbf{e}_{1}, \mathbf{s}\right)
\end{array}\right)
$$

- To compute determinant

Use this fact: $\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=-(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}$

This gives:

$$
\left(\begin{array}{l}
t \\
u \\
v
\end{array}\right)=\frac{1}{\left(\mathbf{d} \times \mathbf{e}_{2}\right) \cdot \mathbf{e}_{1}}\left(\begin{array}{c}
\left(\mathbf{s} \times \mathbf{e}_{1}\right) \cdot \mathbf{e}_{2} \\
\left(\mathbf{d} \times \mathbf{e}_{2}\right) \cdot \mathbf{s} \\
\left(\mathbf{s} \times \mathbf{e}_{1}\right) \cdot \mathbf{d}
\end{array}\right)
$$

- Share factors to speed up computations:

$$
\begin{aligned}
& \mathbf{p}=\mathbf{d} \times \mathbf{e}_{2} \\
& a=\mathbf{p} \cdot \mathbf{e}_{1}
\end{aligned}
$$

- Compute as little as possible. Then test. $f=1 / a$ Compute $u=f(\mathbf{p} \cdot \mathbf{s})$
Then test valid bounds:

$$
\text { if (u<0 or } u>1 \text {) exit; }
$$

Point/Plane

Plane: $\pi: \mathbf{n} \cdot \mathbf{p}+d=0$

- Insert a point x into plane equation:

$$
f(\mathbf{x})=\mathbf{n} \cdot \mathbf{x}+d
$$

$f(\mathbf{x})=\mathbf{n} \cdot \mathbf{x}+d=0 \quad$ for \mathbf{x} 's on the plane

Negative half space

Positive
half space
$f(\mathbf{x})=\mathbf{n} \cdot \mathbf{x}+d<0 \quad$ for \mathbf{x}^{\prime} ' on one side of the plane $f(\mathbf{x})=\mathbf{n} \cdot \mathbf{x}+d>0 \quad$ for \mathbf{x} 's on the other side

Sphere/Plane Box/Plane

Sphere: c

AABB: $\mathbf{b}^{\text {min }} \mathbf{b}^{\text {max }}$

- Sphere: compute $f(\mathbf{c})=\mathbf{n} \cdot \mathbf{c}+d$
- $f(\mathrm{c})$ is the signed distance (n normalized)
- abs $(f(\mathbf{c}))>\mathrm{r} \quad$ no collision
- $\operatorname{abs}(f(\mathrm{c}))=\mathrm{r} \quad$ sphere touches the plane
- abs $(f(\mathrm{c}))<\mathrm{r} \quad$ sphere intersects plane
- Box: insert all 8 corners
- If all f's have the same sign, then all points are on the same side, and no collision

Plane: $\quad \pi: \mathbf{n} \cdot \mathbf{p}+d=0$

AABB/plane

- The smart way (shown in 2D)
- Find the two vertices that have the most positive and most negative value when tested againt the plane

Ray/Plane Intersections

- Ray: $\mathrm{r}(\mathrm{t})=0+\mathrm{td}$
-Plane: $\mathrm{n} \cdot \mathrm{x}+\mathrm{d}=0$; (d=-n•p)
- Set $\mathbf{x}=\mathrm{r}(\mathrm{t})$:
$n \cdot(0+t d)+d=0$
$\mathrm{n} \cdot \mathrm{o}+\mathrm{t}(\mathrm{n} \cdot \mathrm{d})+\mathrm{d}=0$
$t=(-d-n \bullet o) /(n \cdot d)$

Vec3f rayPlaneIntersect(vec3f o,dir, n, d)
\{
float t=(-d-n.dot(o)) / (n.dot(dir)); return o + dir*t;
\}

Ray/Polygon: very briefly

- Intersect ray with polygon plane
- Project from 3D to 2D
- How?
- Find $\max \left(\left|n_{x}\right|,\left|n_{y}\right|,\left|n_{z}\right|\right)$
- Skip that coordinate!

- Then, count crossing in 2D

Volume/Volume tests

- Used in collision detection ream noimesection Else
- Sphere/sphere
- Compute squared distance between sphere centers, and compare to $\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)^{2}$
- Axis-Aligned Bounding Box (AABB)
- Test in 1D for x, y, and z
- Oriented Bounding boxes

- Use SAT [details in book]

View frustum testing

- View frustum is 6 planes:
- Near, far, right, left, top,
- Create planes from projection matrix
- Let all positive half spaces be outside frustum
- Not dealt with here -- p. 983-984.
- Sphere/frustum common approach:
- Test sphere against each of the 6 frustum planes:
- If outside the plane => no intersection
- If intersecting the plane or inside, continue
- If not outside after all six planes, then conservatively concider sphere as inside or intersecting
- Example follows...

View frustum testing example

- Not exact test, but not incorrect
- A sphere that is reported to be inside, can be outside
- Not vice versa
- Similarly for boxes

Dynamic Intersection Jesting

 [In book: 620-628]- Testing is often done every rendered frame, i.e., at discrete time intervals
- Therefore, you can get "quantum effects"

- Dynamic testing deals with this
- Is more expensive
- Deals with a time interval: time between two frames

Dynamic intersection testing Sphere/Plane

- If they are on the same side of the plane ($s_{c} s_{e}>0$)
- and: $\left|s_{c}\right|>r$ and $\left|s_{c}\right|>r$
- Otherwise, sphere can move $\left|s_{c}\right|-r$
- Time of collision:

s_{e} is signed distance
- Response: reflect \mathbf{v} around \mathbf{n}, and move: $\left(1-t_{c d}\right) \mathbf{r}$ ($\mathbf{r}=$ refl vector)

BONUS

Dynamic Separating Axis Theorem
 - SAT: tests one axis at a time for overlap

- Same with DSAT, but:
- Use a relative system where B is fixed
- i.e., compute A's relative motion to B.
- Need to adjust A's projection on the axis so that the interval moves on the axis as well
- Need to test same axes as with SAT
- Same criteria for overlap/disjoint:
- If no overlap on axis => disjoint
- If overlap on all axes => objects overlap

Exercises

- Create a function (by writing code on paper) that tests for intersection between:
- two spheres
- a ray and a sphere
- view frustum and a sphere

Scan Line Fill

Set active edges to AB and AC
For y = A.y, A.y-1,...,C.y
If $y=B . y \rightarrow$ exchange $A B$ with BC
Compute xstart and xend.
Interpolate color, depth, texcoords etc for points (xstart,y) and
 (xend,y)
For $\mathrm{x}=\mathrm{xstart}, \mathrm{xstart}+1, \ldots$, xend Compute color, depth etc for (x, y) using interpolation.

This is one modern way to rasterize a triangle

Using Interpolation

$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ specified by glColor or by vertex shading C_{4} determined by interpolating between C_{1} and C_{3} C_{5} determined by interpolating between C_{2} and C_{3} interpolate between C_{4} and C_{5} along span

Rasterizing a Triangle

-Convex Polygons only
-Nonconvex polygons assumed to have been tessellated
-Shader results (e.g. colors) have been computed for the vertices. Depth occlusion resolved with z-buffer.

- March across scan lines interpolating vertex shader output parameters, as input to the fragment shader.
- Incremental work small

Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)
flood_fill(int x, int y) \{
if (read_pixel (x,y)= = WHITE) \{
write_pixel (x, y, BLACK) ;
flood_fill(x-1, y);
flood_fill (x+1, y);
flood_fill (x, y+1);
flood_fill(x, y-1);
\} \}

What you need to know

- Analytic test:
- Be able to compute ray vs sphere or other similar formula
- Ray/triangle, ray/plane
- Geometrical tests
- Ray/box with slab-test
- Ray/polygon (3D->2D)
- AABB/AABB
- Other:
- Point/plane,
- Sphere/plane
- Box/plane, AABB/plane
- SAT
- Know what a dynamic test is
- Understand floodfill

