
Shading

Slides by Ulf Assarsson and Tomas
Akenine-Möller
Department of Computer Engineering
Chalmers University of Technology

Overview of today’s lecture
l A simple most basic real-time lighting

model
– It is also OpenGL’s old fixed pipeline lighting

model
l Fog
l Gamma correction
l Transparency and alpha

Tomas Akenine-Mőller © 2002

Compute lighting at vertices,
then interpolate over triangle

l How compute lighting?
l We could set colors per vertex manually
l For a little more realism, compute lighting from

– Light sources
– Material properties
– Geometrical relationships

light

Geometry

blue

red green

Rasterizer

The ambient/diffuse/specular/emission
model

l Also the most basic real-time model:
l Light interacts with material and change color at bounces:

l Diffuse light: the part that spreads equally in all directions (view
independent) due to that the surface is very rough on microscopic level

n

outColorrgb ~materialrgb ⊗ lightColorrgb

The ambient/diffuse/specular/emission
model

l Also the most basic real-time model:
l Light interacts with material and change color at bounces:

l Diffuse light: the part that spreads in all direction (view independent)
l Specular light: the part that spreads mostly in the reflection direction

(often same color as light source)

n

outColorrgb ~materialrgb ⊗ lightColorrgb

The ambient/diffuse/specular/emission
model

l Also the most basic real-time model:
l Light interacts with material and change color at bounces:

l Diffuse light: the part that spreads in all direction (view independent)
l Specular light: the part that spreads mostly in the reflection direction

(often same color as light source)
l Ambient light: incoming background light from all directions and spreads

in all directions (view-independent and light-position independent color)

n

outColorrgb ~materialrgb ⊗ lightColorrgb

The ambient/diffuse/specular/emission
model

l Also the most basic real-time model:
l Light interacts with material and change color at bounces:

l Diffuse light: the part that spreads in all direction (view independent)
l Specular light: the part that spreads mostly in the reflection direction

(often same color as light source)
l Ambient light: incoming background light from all directions and spreads

in all directions (view-independent and light-position independent color)
l Emission: self-glowing surface

n

outColorrgb ~materialrgb ⊗ lightColorrgb

Tomas Akenine-Mőller © 2002Added by Ulf Assarsson, 2004

Material:
•Ambient (r,g,b,a)
•Diffuse (r,g,b,a)
•Specular (r,g,b,a)
•Emission (r,g,b,a) =”självlysande färg”

Light: (r,g,b)
or even

• Ambient (r,g,b,a)
• Diffuse (r,g,b,a)
• Specular (r,g,b,a)

DIFFUSE Base color
SPECULAR Highlight Color
AMBIENT Low-light Color
EMISSION Glow Color
SHININESS Surface Smoothness

A basic lighting model

Ambient component: iamb
l Ad-hoc – tries to account for light coming

from other surfaces
l Just add a constant color:

ambambamb smi Ä=
i.e., (ir , ig , ib , ia) = (mr , mg , mb , ma) (lr , lg , lb , la)

Tomas Akenine-Mőller © 2002

Diffuse component : idiff
l i=iamb+idiff+ispec
l Diffuse (Lambert’s law): fcos=×= lndiffi

l Photons are scattered equally in all
directions

diffdiffdiff smlni Ä×=)(
n and l are
assumed being
unit vectors

Lambertian Surfaces

• Perfectly diffuse reflector
• Light scattered equally in all directions

Highly reflective
surface (specular)

Fully diffuse surface
(Lambertian)

Tomas Akenine-Mőller © 2002

Lighting
Specular component : ispec

l Diffuse is dull (left)
l Specular: simulates a highlight

Tomas Akenine-Mőller © 2002

Specular component: Phong
l Phong specular highlight model
l Reflect l around n:

l)n2(nlr ×+-=

n

lr

-l
nln)(×

ln ×

shishi mm
speci)(cos)(r=×= vr

€

ispec = ((n⋅ l) < 0) ? 0 : max(0,(r⋅ v))mshimspec ⊗ sspec
l Next: Blinns highlight formula: (n.h)m

n must be unit
vector

Halfway Vector

Blinn proposed replacing v·r by n·h where
h = (l+v)/|l + v|
(l+v)/2 is halfway between l and v
If n, l, and v are coplanar:

y = f/2
Must then adjust exponent
so that (n·h)e� ≈ (r·v)e

(e� ≈ 4e)

Efficiency
The Blinn rendering model is less efficient than pure Phong shading in most cases, since it
contains a square root calculation. While the original Phong model only needs a simple
vector reflection, this modified form takes more into consideration. However, as many CPUs
and GPUs contain single and double precision square root functions (as standard features)
and other instructions that can be used to speed up rendering -- the time penalty for this kind
of shader will not be noticed in most implementations.
However, Blinn-Phong will be faster in the case where the viewer and light are treated to be
at infinity. This is the case for directional lights. In this case, the half-angle vector is
independent of position and surface curvature. It can be computed once for each light and
then used for the entire frame, or indeed while light and viewpoint remain in the same
relative position. The same is not true with Phong's original reflected light vector which
depends on the surface curvature and must be recalculated for each pixel of the image (or for
each vertex of the model in the case of vertex lighting).
In most cases where lights are not treated to be at infinity, for instance when using point
lights, the original Phong model will be faster.

Tomas Akenine-Mőller © 2002

Lighting
i=iamb+idiff+ispec

l This is just a hack!
l Has little to do with how reality works!

++

=

Tomas Akenine-Mőller © 2002

Additions to the lighting equation
l Accounting for distance: 1/(a+bt+ct2)
l Several lights: just sum their respective

contributions
l Different light types:

Clarifications
l Energy is emitted at equal proportions

in all directions from a spherical
radiator. Due to energy conservation,
the intensity is proportional to the
spherical area at distance r from the
light center.

• A = 4πr2

l Thus, the intensity scales
~ 1/r2 r

Tomas Akenine-Mőller © 2002

Shading
l Shading: do lighting (at e.g. vertices) and

determine pixel’s colors from these

l Three common types of shading:
– Flat, Goraud, and Phong

Tomas Akenine-Mőller © 2002

Shading
l Three common types of shading:

– Flat, Goraud, and Phong
l In standard Gouraud shading the lighting is computed per triangle vertex

and for each pixel, the color is interpolated from the colors at the
vertices.

l In Phong Shading the lighting is not computed per vertex. Instead the
normal is interpolated per pixel from the normals defined at the vertices
and full lighting is computed per pixel using this normal. This is of course
more expensive but looks better.

Flat Gouraud Phong

// Vertex Shader
#version 130

in vec3 vertex;
in vec3 normal;
uniform vec4 mtrlAmb, mtrlDiffuse, mtrlSpec, mtrlEmission;
uniform vec4 lightAmb, lightDiffuse, lightSpec, lightEmission;
uniform float shininess;
uniform mat4 modelViewProjectionMatrix, normalMatrix, modelViewMatrix;
uniform vec4 lightPos; // in view space
out vec3 outColor;

void main()
{

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);
// ambient
outColor = lightAmb * mtrlAmb;

// diffuse
vertex = vec3(modelViewMatrix * vec4(vertex,1));
normal = normalize(normalMatrix * normal);
vec3 lightDirection = normalize(lightPos – vertex.xyz);
float intensity=max(0, dot(normal, lightDirection)
outColor += lightDiffuse*mtrlDiffuse*intensity;

// specular
vec3 viewVec = -vertex.xyz; // because we are in view space
vec3 reflVec = -lightDirection + normal*(2*dot(normal*lightDirection))
intensity=pow(max(0,(dot(reflVec, viewVec)), shininess));
outColor += lightSpec * mtrlSpec * max(0,intensity);

}

Gouraud Shading Code
// Fragment Shader:
#version 130
in vec3 outColor;
out vec4 fragColor;

void main()
{

fragColor =
vec4(outColor,1);

}

€

ispec = ((n⋅ l) < 0) ? 0 : max(0,(r⋅ v))mshimspec ⊗ sspec

l)n2(nlr ×+-=

For one light source

// Fragment Shader:
#version 130
in vec3 outColor, lightDirection, N, pos;
in vec3 viewVec;
uniform vec3 mtrlDiffuse, mtrlSpec, mtrlEmission;
uniform vec3 lightDiffuse, lightSpec, lightEmission;
uniform float shininess;
out vec4 fragColor;

void main()
{

N = normalize(N); // renormalize due to the interpolation
// diffuse
float intensity=max(0, dot(N, lightDirection)
outColor += lightDiffuse*mtrlDiffuse*intensity;

// specular
vec3 reflVec = -lightDirection + N*(2*dot(N*lightDirection));
intensity=pow(max(0,(dot(reflVec, viewVec)), shininess));
outColor += lightSpec * mtrlSpec * max(0,intensity);
fragColor = vec4(outColor,1);

}

// Vertex Shader
#version 130

in vec3 vertex;
in vec3 normal;
uniform vec3 mtrlAmb;
uniform vec3 lightAmb;
uniform vec4 lightPos;
uniform mat4 modelViewProjectionMatrix;
uniform mat4 normalMatrix;
uniform mat4 modelViewMatrix;
out vec3 outColor;
out vec3 N;
out vec3 viewVec;
out vec3 lightDirection;

void main()
{

gl_Position = modelViewProjectionMatrix*
vec4(vertex,1);

// ambient
outColor = lightAmb * mtrlAmb;

N= normalize(normalMatrix * normal);
lightDirection = normalize(lightPos – vertex.xyz);
viewVec=-vec3(modelViewMatrix*vec4(vertex,1));

}

Phong Shading CodeFor one light source

Transparency and alpha
l Transparency

– Very simple in real-time contexts
l The tool: alpha blending (mix two colors)
l Alpha (a) is the forth color component (r,g,b,a)

– e.g., of the material for a triangle
– Represents the opacity
– 1.0 is totally opaque
– 0.0 is totally transparent

l The over operator:
dso ccc)1(aa -+=

Rendered object

Ulf Assarsson© 2007

Transparency
l Need to sort the transparent objects

– Render back to front (blending is order dep.)
l See next slide…

l Lots of different other blending modes

l Can store RGBa in textures as well

So the texels with a=0.0
do not not hide the
objects behind

dso ccc)1(aa -+=
Rendered fragment Background

Transparency
l Need to sort the transparent objects

– First, render all non-transparent triangles as
usual.

– Then, sort all transparent triangles and
render them back-to-front with blending
enabled.
l The reason for sorting is that the blending operation

(i.e., over operator) is order dependent.

If we have high frame-to-frame coherency regarding the objects to be
sorted per frame, then Bubble-sort (or Insertion sort) are really good!
(superior to Quicksort).
Because, they have expected runtime of resorting already almost sorted
input in O(n) instead of O(n log n), where n is number of elements.

Ulf Assarsson © 200326

l Used for
– Transparency

l glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

– Effects (shadows, reflections)

– (Complex materials)
l Quake3 used up to 10 rendering passes, blending toghether

contributions such as:
– Diffuse lighting (for hard shadows)

– Bump maps

– Base texture
– Specular and emissive lighting

– Volumetric/atmospheric effects

– Enable with glEnable(GL_BLEND)

Blending

dso ccc)1(aa -+=

Tomas Akenine-Mőller © 2002

Fog
l Simple atmospheric effect

– A little better realism
– Help in determining distances

Tomas Akenine-Mőller © 2002

l Color of fog: color of surface: fc sc

€

c p = fcs + (1− f)c f f ∈[0,1]
l How to compute f ?
l 3 ways: linear, exponential, exponential-squared
l Linear:

startend

pend

zz
zz

f
-

-
=

Tomas Akenine-Mőller © 2002

Fog example

l Often just a matter of
– Choosing fog color
– Choosing fog model
– Old OpenGL – just turn it on. New OpenGL – program it

yourself in the fragment shader

Fog in up-direction

Tomas Akenine-Mőller © 2002

Gamma correction

Lighting computes
rgb color intensities in
linear space from
[0,1]

However, CRT-monitor output is exponential.
Has more precision for darker regions. Very
Good! But we need to adapt the input to
utilize this. Else, our images will be too dark.

xγ

Intensities: xγ vs linear

Expon. distribution better for
humans. Our eyes have non-
linear sensitivity and monitors
have limited brightness

xγ: perceived
lin. intensity:

linear intensity:

darker brighter darker brighter

γ = 2.2

So, store color intensities with more precision for darker colors: i.e., convert color to x(1/γ) before storing in
8- bits in the frame buffer. Conversion to x(1/γ) is called gamma correction.

Shader rgb colors

x(1/γ)

Frame buffer rgb colors.
“Dark pixels are made brighter”

x(1/γ)

Displayed by CRT
Linear output again, but
redistributed precision.

sc
re

en

= rgb_in

xγ

Framebuf. rgb: 0 0.5 0.66 0.8 0.9 1
Shader rgb: 0 0.2 0.4 0.6 0.8 1

rgb_in

rgb_out

(x(1/γ)) γ

in
te

ns
ity

Textures: store in
gamma space for better
ditributed precision.

Tomas Akenine-Mőller © 2002

Gamma correction

l If input to gun is 0.5, then you don’t get
0.5 as output in intensity

l Instead, gamma correct that signal:
gives linear relationship

Tomas Akenine-Mőller © 2002

Gamma correction

l I=intensity on screen
l V=input voltage (electron gun)
l a,e, and g are constants for each system
l Common gamma values: 2.2-2.6
l Assuming e=0, gamma correction is:

ge)(+= VaI

)/1(g
icc =

Why is it important to care about
gamma correction?
l Portability across platforms
l Image quality

– Texturing
– Anti-aliasing

l One solution is to put gamma correction
in hardware…

l sRGB asumes gamma=2.2
l Can use EXT_framebuffer_sRGB to render with

gamma correction directly to frame buffer

Gamma correction today
l Reasons for wanting gamma correction (standard is 2.2):
1. Screen has non-linear color intensity

– We often really want linear output (e.g. for correct antialiasing)
– (But, today, screens can be made with linear output, so non-linearity is more

for backwards compatibility reasons.)

2. Also happens to give more efficient color space (when
compressing intensity from 32-bit floats to 8-bits). Thus, often
desired when storing textures. Gamma of 2.2. Better

distribution for humans.
Perceived as linear.

Truly linear intensity
increase.

A linear intensity output (bottom) has a large jump in perceived brightness
between the intensity values 0.0 and 0.1, while the steps at the higher end of the
scale are hardly perceptible.
A nonlinearly-increasing intensity (upper), will show much more even steps in
perceived brightness.

What is important
l Amb-, diff-, spec-, emission model +

formulas
l Phong’s + Blinn’s highlight model
l Flat-, Gouraud- and Phong shading
l Transparency
l Fog
l Two reasons for wanting gamma

correction

Tomas Akenine-Mőller © 2002

THE END

