
An introduction to
Global Illumination

Tomas Akenine-Möller
Modified by Ulf Assarsson
Department of Computer Engineering
Chalmers University of Technology

DAT295/DIT221 Advanced Computer
Graphics - Seminar Course, 7.5p

l If you are interested, register to that course
l http://www.cse.chalmers.se/edu/course/TDA361/Advan

ced Computer Graphics/
l ~13 seminars in total, sp3+4
l Project (no exam)

– Self or in groups

l Project examples include:
– realistic explosions, clouds, smoke, procedural textures
– fractal mountains, CUDA program, Spherical Harmonics, SSAO,

Displacement mapping, Collision detection
– 3D Game
– real-time ray tracer, ray tracing with photon mapping.
– HDRI

http://www.cse.chalmers.se/edu/course/TDA361/Advanced%20Computer%20Graphics/

GFX Companies Gothenburg
Non-Gothenburg

Game Studios:
Avalanche studios (Sthlm)
DICE (Sthlm)
Massive (Malmö)

Architects
Arcitec – (Sthlm)–
visualization of buildings for
architects

For graphics artists:
Rapid Images
zoink
industriromantik
Stark Film
Edit House
Bobby Works
Filmgate
Ord och bild
Magoo 3D Studios
Tenjin Visual
Silverbullet Film
Tengbom
MFX – www.mfx.se

Architects, graphics artists:
White
Wingårdhs
Volvo Personvagnar
Semcon
Ramböll
Zynka
CAP AB
Grafia

3D software development:
Ghost Games (EA)
Rapid Images
Smart Eye AB,
EON Reality,
Spark Vision
(Autodesk)
MindArk
Mentice
Vizendo
Surgical Science
Combitech
Fraunhofer (Chalmers Teknikpark)
RD&T Technology

And many more that I have forgotten
now…

3

http://www.mfx.se/

Isn’t ray tracing enough?

Images courtesy of Henrik Wann Jensen

Ray tracing

Effects to note in Global Illumination image:
1) Indirect lighting (light reaches the roof)
2) Soft shadows (light source has area)
3) Color bleeding (example: roof is red near red wall) (same as 1)
4) Caustics (concentration of refracted light through glass ball)
5) Materials have no ambient component

Global
Illumination

Which are
the differences?

Global Illumination
l The goal: follow all photons through a scene, in

order to render images with all light paths
l This will give incredibly realistic images
l This lecture will treat:

– Background
– Montecarlo ray tracing
– Path tracing
– Photon mapping
– Final Gather

l Great books on global illumination and photon
mapping:
– Henrik Wann Jensen, Realistic Image Synthesis using

Photon Mapping, AK Peters, 2001.
– Pharr, Humphreys, Physically Based Rendering, 2010.

Light transport notation
Useful tool for thinking about global illumination (GI)

l Follow light paths
l The endpoints of straight paths can be:

– L : light source
– E : the eye
– S : a specular reflection
– D: a diffuse reflection
– G: a glossy reflection

l Regular expressions can be used:
– (K)+ : one or more of K
– (K)* : zero or more of K
– (K)? : zero or one of K
– (K | M) : a K or an M event

N
ot

at
io

n
af

te
r P

au
l H

ec
kb

er
t,

SI
G

G
R

A
PH

 9
0

Examples of
light transport notation

l The following expression describes all light
paths to the eye in this scene: L(S|D)*E

diffuse floor and wall

Specular ball

eye

light

l Path A: LDDDE

AB

l Path B: LSDSDE

Light transportation
What for?
l The ultimate goal is to simulate all light

paths: L(S|D|G)*E
l Using this notation, we can find what ray

tracing can handle:
– LDS*E | LS*E = LD?S*E
– This is clearly not L(S|D|G)*E

Tomas Akenine-Mőller © 2002

Background:
Radiance
l Radiance, L : a radiometric term. What we store in a

pixel is the radiance towards the eye
– the amount of electromagnetic radiation leaving or arriving at a

point on a surface
l Five-dimensional (or 6, including wavelength):

– Position (3)
– Direction (2) – horizontal + vertical angle

l Radiance is ”power per unit projected area per unit solid
angle”

Solid angle: measured in
Steradians (4p is whole sphere).

Uses differentials, so the cone
of the solid angle becomes
infinitesmally small: a ray

dw

Background:
The rendering equation
l Paper by Kajiya, 1986 (see course website).
l Is the basis for all rendering, but especially for

global illumination algorithms
l Lo(x,w)=Le(x, w)+Lr(x, w) (slightly different terminology than Kajiya)

– outgoing=emitted+reflected radiance
– x is position on surface, w is direction vector

l Extend the last term Lr(x,w)

')')(',()',,(wwwww dLfLL ireo nxx ×+= ò
W

l fr is the BRDF (next slide), w’ is incoming direction, n is
normal at point x, W is hemisphere ”around” x and n, Li
is incoming radiance

Background:
Briefly about BRDFs

l Bidirectional Reflection Distribution Function
l A more accurate description of material

properties
l What it describes: the probability that an

incoming photon will leave in a particular
outgoing direction

l i is incoming
l o is outgoing
l Huge topic!
l Many different ways

to get these
– Measurement
– Hacks: amb+diff+spec

Radiance/strålning
l Radiance, L : a radiometric term. What we store in a

pixel is the radiance towards the eye
– the amount of electromagnetic radiation leaving or arriving at a

point on a surface

l Lo= outgoing radiation from a point to a certain direction
l Radiation = color and its intensity, i.e., rbg-value
l x = x,y,z-position in space
l w = outgoing direction

Lo(x,w)

x

12

l Paper by Kajiya, 1986.
l Is the basis for all global illumination algorithms
l Lo(x,w)=Le(x, w)+Lr(x, w)

– outgoing=emitted+reflected radiance

')')(',()',,(wwwww dLfLL ireo nxx ×+= ò
W

l fr is the BRDF, w’ is incoming direction, n is normal at point x, W is
hemisphere ”around” x and n, Li is incoming radiance

The rendering equation - Summary

Le(x,w)

Self glowing term

l Paper by Kajiya, 1986.
l Is the basis for all global illumination algorithms
l Lo(x,w)=Le(x, w)+Lr(x, w)

– outgoing=emitted+reflected radiance

Lr(x,w)

')')(',()',,(wwwww dLfLL ireo nxx ×+= ò
W

l fr is the BRDF, w’ is incoming direction, n is normal at point x, W is
hemisphere ”around” x and n, Li is incoming radiance

Li(x,w’)

Li(x,w’)Li(x,w’)

Li(x,w’)

The rendering equation - Summary

Integrate over all
incoming
directions w’to
get how much
radiance is
reflected in
outgoing
direction w.

l Paper by Kajiya, 1986.
l Is the basis for all global illumination algorithms
l Lo(x,w)=Le(x, w)+Lr(x, w)

– outgoing=emitted+reflected radiance

')')(',()',,(wwwww dLfLL ireo nxx ×+= ò
W

l fr is the BRDF, w’ is incoming direction, n is normal at point x, W is
hemisphere ”around” x and n, Li is incoming radiance

The rendering equation
BRDF = Bidirectional Reflection Distribution Function

n
w’

cos(a)

a

Intensity scales with
the angle

Many GI algorithms are built on
Monte Carlo Integration
l Integral in rendering equation
l Hard to evaluate
l MC can estimate integrals: ò=

b

a
dxxfI)(

l Assume we can compute the mean of f(x) over the
interval [a,b]
l Then the integral is mean*(b-a)

l Thus, focus on estimating mean of f(x)
l Idea: sample f at n uniformly distributed random locations, xi:

å
=

-=
n

i
iMC xf

n
abI

1
)(1)(Monte Carlo estimate

l When nàinfinity, IMCàI
l Standard deviation convergence is slow: n

1
µs

l Thus, to halve error, must use 4x number of samples!!

Monte Carlo Ray Tracing (naively)

l Sample indirect illumination by shooting
sample rays over the hemisphere, at
each hit.

diffuse floor and wall

eye

Ulf Assarsson© 2007

')')(',()',,(wwwww dLfLL ireo nxx ×+= ò
W

Monte Carlo Ray Tracing (naively)
l This gives a ray tree with most rays at

the bottom level. This is bad since these
rays have the lowest influence on the
pixel color.

PathTracing
– one efficient Monte-Carlo Ray Tracing solution
l Path Tracing instead only traces one of the

possible ray paths at a time. This is done by
randomly selecting only one sample direction
at a bounce. Hundreds of paths per pixel are
traced.

Equally number of rays are traced at each level

Path Tracing – indirect + direct
illumination

l Shoot many paths per pixel (the image just shows one
light path).

– At each intersection,
l Shoot one shadow ray per light source

– at random position on light, for area/volumetric light sources
l and then randomly select one new ray direction.

diffuse floor and wall

eye

Ulf Assarsson© 2007

light light

Example of soft shadows on a
diffuse surface (with path tracing)

l Example: Three rays for one pixel
l All three rays hits diffuse floor
l Pick one random position on light source
l Send one random diffuse ray (D’s above)

– in order to continue the path...

diffuse floor and wall

eye

light

D D

D

Path tracing: One solution to GI
See section 6 in Kajiya’s paper

l Uses Monte Carlo sampling to solve

integration: just shoot many random rays

over the integral domain

l Example: ray hits a diffuse surface

– Shoot many rays distributed randomly over the

possible reflection directions

– Gives color bleeding effects (and the ambient

part of lighting)

l Algorithm: shoot many rays per pixel, and

randomly choose one new ray at each

interaction with surface + one shadow

ray per light.

Example of diffuse surface + soft
shadows

l Need to send many many rays to avoid noisy
images
– Sometimes 1000 or 10,000 rays are needed per pixel!

l Still, it is a simple method to generate high
quality images

One sample
per pixel

100 samples
per pixel

Images courtesy of Peter Shirley

Perfectly Diffuse and Perfectly
Specular surfaces in path tracing
l Assume kdiff+kspec<=1

– Comes from that energy cannot be created, but can be
absorbed

– kdiff can be sum of diffuse color, (R+G+B)/3, and same
for kspec.

l When a ray hits such a surface
– Pick a random number, r in [0,1]
– If(r < kdiff) à send diffuse ray (e.g. in random direction)
– Else if(r < kdiff +kspec) à send specular ray (e.g. along

reflection direction)
– Else absorb ray.

l This is often called Russian roulette

A classical example – spec+diff
surface + hard shadow
l Path tracing was introduced in 1986 by Jim

Kajiya

l Note how the right sphere reflects light, and so
the ground under the sphere is brighter

Tomas Akenine-Mőller © 2002

What is Caustics?
l Caustic’s don’t work well for path tracing

Reason why forward ray tracing
fails to capture caustics well

Caustic

eye

Must be lucky to hit the specular
reflector and discover that it
focuses the light.

Compute color

Strong light

Path tracing:

Example when path tracing works
well
l When indirect illumination varies slowly and no specularity

– An example with strong indirect illumination is caustics (concentrated
refracted light)

l Example from Henrik Wann Jensen
l 100 paths per pixel
l 140,000 triangles
l 1024x512 in 20 min. on a PIII-500

Tomas Akenine-Mőller © 2002

Extensions to path tracing
l Bidirectional path tracing

– Developed in1993-1994
– Sends light paths, both from eye and from the light
– Faster, but still noisy images.

l Metropolis light transport
– 1997
– Ray distribution is proportional to unknown function
– Means that more rays will be sent where they are needed
– Faster convergence in certain cases (see below)

Path tracing Metropolis (same rendering time)

Im
ag

es
 c

ou
rte

sy
 o

f E
ric

 V
ea

ch

Bidirectional Path tracing

Photon mapping
l Developed by Henrik Wann Jensen (started

1993)
l A clever two-pass algorithm:

– 1: Shoot photons from light source, and let them bounce
around in the scene, and store them where they land

– 2: ”Ray tracing”-like pass from the eye, but gather the
photons from the previous pass

l Advantages:
l Fast
l Handles arbitrary geometry (as do path tracing)
l All global illumination effects can be seen
l Little noise (in still images)

The first pass:
Photon tracing
l Store illumination as points (photons) in a

”photon map” data structure
l In the first pass: photon tracing

– Emit photons from light sources
– Trace them through scene
– Store them in photon map data structure

l More details:
– When a photon hits a surface (that has a diffuse

component), store the photon in photon map
– Then use Russian roulette to find out whether the photon

is absorbed or reflected
– If reflected, then shoot photon in new random direction

Photon tracing

l Should not store photon at specular surfaces, because these
effects are view dependent

– only diffuse effect is view independent
l At hit, photon gets colored (looses intensity)

– E.g., white photon (1,1,1) becomes pink (0.8, 0.5, 0.5), so looses intensity.
– Instead of decreasing intensity, decrease probability of further scatter the

photon. (E.g., probability of absorbing photon = 1/5)
– Why not just decrease the photon’s intensity?

l Harder to get good filtering by expanding spheres

diffuse floor and wall

light

This type of arrow
is a stored photon

The photon map data structure
l Keep them in a separate (from geometry) structure
l Store all photons in kD-tree

– Essentially an axis-aligned BSP tree, since we must alter
splitting axis: x,y,z,x,y,z,x,y,z, etc.

– Each node stores a photon
– Needed because the algorithm needs to locate the n closest

photons to a point

l A photon:
– float x,y,z;
– char power[4]; // essentially the color, with more accuracy
– char phi,theta; // compact representation of incoming direction
– short flag; // used by KD-tree (stores which plane to split)

l Create balanced KD-tree – simple, done once.
l Photons are stored linearly in memory:

– Parent node at index: p
– Left child at: 2p , right child: 2p+1

Tomas Akenine-Mőller © 2002

Locate n closest photons
After Henrik Wann Jensen

// locate n closest photons around point ”pos”
// call with ”locate_photons(1)”, i.e., with the root as in argument
locate_photons(p)
{

if(2p+1 < number of photons in photon map structure)
{ // examine child nodes

delta=signed distance to plane of node n
if(delta<0)
{ // we’re to the ”left” of the plane

locate_photons(2p);
if(delta*delta < d*d)

locate_photons(2p+1); //right subtree
}
else
{ // we’re to the ”right” of the plane

locate_photons(2p+1);
if(delta*delta < d*d)

locate_photons(2p); // left subtree
}

}
delta=real distance from photon p to pos
if(delta*delta < d*d)
{ // photon close enough?

insert photon into priority queue h
d=distance to photon in root node of h

}
}
// think of it as an expanding sphere, that stops exanding when n closest
// photons have been found

What does it look like?
l Stored photons displayed:

Density estimation
l The density of the photons indicate how much light that

point receives
l Radiance is the term for what we display at a pixel
l Complex derivation skipped (see Jensen’s book)…
l Reflected radiance at point x:

),(),,(),(ppp

n

rfr
L www

1
w

1
2 xxx F» åp

l L is radiance in x in the direction of w
l r is radius of expanded sphere
l wp is the direction of the stored photon
l Fp is the stored power of the photon
l fr is the BRDF

Two-pass algorithm
l Already said:

– 1) Photon tracing, to build photon maps
– 2) Rendering from the eye using photon maps

l Pass 1 (create photon maps):
– Use two photon maps
– A caustics photon map (for caustics)

l Stores photons that have been reflected or refracted (via a
specular/transparent surface) to a diffuse surface

l (Light transport notation: LS+D)

– A global photon map (for all illumination)
l All photons that landed on diffuse surfaces
l L(S | D)*D

+

Caustic map and global map

l Caustic map: send photons only towards
reflective and refractive surfaces
– Caustics is a high frequency component of illumination
– Therefore, need many photons to represent accurately

l Global map - assumption: illumination varies
more slowly

Caustic map Global map

Pass 2:
Rendering using the photon map
l Render from the eye using a modified ray

tracer
– A number of rays are sent per pixel
– For each ray, evaluate four terms

l Direct illumination (light that reaches a surface directly
from light source)… may need to send many rays to area
lights. Done using standard ray tracing.

l Specular reflection (also evaluted using ray tracing,
possibly with many rays sent around the reflection
direction)

l Caustics: use caustics photon map
l Indirect illumination: use the global photonmap

– Or Final Gather + global photon map...

Example of noise when using the
photon maps for the primary rays

l Ugly noise:
l Solution:

– for the primary
rays: use Final
Gather instead
of using the
global photon
map

41

A modification for indirect
Illumination – Final Gather

diffuse floor and wall

eye

l Too noicy to use the global map for direct visualization
l Remember: eye rays are recursively traced (via

reflections/refractions) until a diffuse hit, p. There, we want to
estimate slow-varying indirect illumination.

– Instead of growing sphere in global map at p, Final Gather shoots 100-1000 indirect rays
from p and grows sphere in the global map and also caustics map, where each of those
rays end at a diffuse surface.

Final Gather
l Final gathering is a technique for estimating global illumination for a given

point by either sampling a number of directions in the hemisphere over
that point (such a sample set is called a final gather point), or by
averaging a number of final gather points nearby since final gather points
are too expensive to compute for every illuminated point.

l For diffuse hits, final gathering often improves the quality of the global
illumination solution. Without final gathering, the global illumination on a
diffuse surface is computed by estimating the photon density (and
energy) near that point. With final gathering, many new rays are sent out
to sample the hemisphere above the point to determine the incident
illumination. Some of these rays hit diffuse surfaces; the global
illumination at those points is then computed by the material shaders at
those sample point, using illumination from the photon maps and other
material properties. Other rays hit specular surfaces and do not contribute
to the final gather color (since that type of light transport is a secondary
caustic). Tracing many rays (each with photon map lookups) is very time-
consuming so it is only done when necessary – in most cases,
interpolation and extrapolation from previous nearby final gatherings is
sufficient.

Indirect illumination:
Use the global photon map

l To evaluate indirect illumination at point p:
– Send several random rays out from p, and grow

spheres at contacts
– May need several hundreds of rays to get good

results.

diffuse floor and wall

eye

light

photon

p

Images of the four components

l These together solves the entire
rendering equation!Im

ag
e

sc
an

ne
d

fr
om

 H
en

rik
 W

an
n

Je
ns

en
’s

 b
oo

k

=

Photon Mapping - Summary
l Creating Photon Maps:

– Trace photons (~100K-1M) from light source. Store them in kd-tree when they hit diffuse
surface. Then, use russian roulette to decide if the photon should be absorbed or
specularly or diffusively reflected. Create both global map and caustics map. For the
Caustics map, we send more of the photons towards reflective/refractive objects.

l Ray trace from eye:
– As usual: I.e., shooting primary rays and recursively shooting reflection/refraction rays, and

at each intersection point p, compute direct illumination (shadow rays + shading).
– Also grow sphere around each p in caustics map to get caustics contribution and in global

map to get slow-varying indirect illumination.
– If final gather is used: At the first diffuse hit, instead of using global map directly, sample

indirect slow varying light around p by sampling the hemisphere with ~100 – 1000 rays and
use the two photon maps where those rays hit a surface.

l Growing sphere:
– Uses the kd-tree to expand a sphere around p until a fixed amount (e.g. 50) photons are

inside the sphere. The radius is a measure of the intensity of indirect light at p. The BRDF
at p could also be used to get a more accurate color and intensity value.

Ulf Assarsson© 2007

Tomas Akenine-Mőller © 2002

Standard
photon mapping

Caustics: concentrated
reflected or refracted light

Extensions to photon mapping
l Participating media

Another one on participating media

Smoke and photon mapping

Press for a movie

Much more details to photon
mapping…

• Henrik Wann Jensen, Realistic Image Synthesis using Photon
Mapping, AK Peters, 2001.

• Check out: Henrik’s home page:
http://graphics.stanford.edu/~henrik/

In conclusion
l If you want to get global illumination

effects, then implement a path tracer
– Simple to implement
– Good results
– Disadvantage: rendering times (many many rays

per pixel)

l More advanced alternatives:
– Bidirectional path tracing
– Photon Mapping
– Metropolis Light Transport

What you need to know
– The rendering equation

l Be able to explain all its components

– Path tracing
l Why it is good, compared to naive monte-carlo sampling
l The overall algorithm (on a high level as in these slides).

– Photon Mapping
l The overall algorithm. See the summary slide on:

– Creating Photon Maps…
– Ray trace from eye…
– Growing spheres…

– Final Gather
l Why it is good. How it works:

– At the first diffuse hit, instead of using global map directly, sample indirect
slow varying light around p by sampling the hemisphere with ~1000 rays
and use the two photon maps where those rays hit a diffuse surface.

– Bidirectional Path Tracing, Metropolis Light Transport
l Just their names. Don’t need to know the algorithms.

