Screen-space Reflections

SSR: ON

What about cubemaps?

Sometimes work well

But no self reflection

Precomputed t only static reflections

Planar Reflections

6

With cube map, reflections out of sync

Rerender Solution

- Render again from reflected viewpoint
- Complexity scales with scene
- Normally for perfectly planar surfaces

What can be exploited in scene?

Reuse screen-space data!

Basic SSR Algorithm - Mirror Reflection

- For each fragment
 - Compute reflection ray
 - Trace along ray direction (using depth buffer)
 - Use color of intersection point as reflection color

Shaded scene

Normals

Depth

Shaded scene with SSR

Linear Raymarch

Goal: Find intersection point

- At each step, check depth value
- Quality depends on step size
- Can be refined

SSR in Frostbite

SSR in Frostbite

Rough Surfaces

Use cheap rays

Smooth Surfaces

Use expensive rays

Generate Depth Mip-Map

• Use min values instead of average

Start at first mip level - OK!

What's the difference?

- Cannot miss tiny geometry
- Mip-map hierarchy
- More expensive

Reflection direction to use

Importance Sampling:

- BRDF
- Halton sequence

SSR in Frostbite

Neighbor Rays

- Nearby pixels likely to give similar reflection
- Reuse nearby intersection points
- Need to weight accordingly

Weighing Neighbors

- Green in formula is important part
- "Variance reduction"
- For each nearby hit
 - weight = $f_s(hit) / p_k$
 - contribution = color(hit) * weight
- FG is precomputed BRDF factor
- They use N = 4

$$L_0 \approx \frac{\sum_{k=1}^{N} \frac{L_i(l_k) f_s(l_k \to v) \cos \theta_{i_k}}{p_k}}{\sum_{k=1}^{N} \frac{f_s(l_k \to v) \cos \theta_{i_k}}{p_k}} FG$$

1 ray/pixel in half-resolution No ray reuse 1 ray/pixel in half-resolution4 neighbor reuse = 4 resolve samples
SSR in Frostbite

Temporal Reprojection (filtering)

Reproject last frame into current frame

$$\vec{x}_t = P_t V_t (P_{t-1} V_{t-1})^{-1} \vec{x}_{t-1}$$

Temporal Reprojection (filtering)

- Problems: smeared reflections when moving camera
- Reproject ray intersection location instead of reflected surface location

1 ray/pixel in half-resolution, 4 resolve samples Without temporal filter 1 ray/pixel in half-resolution, 4 resolve samples With temporal filter

Sparse Ray Tracing

- Decouple ray tracing from color resolve
- Only do ray tracing in half resolution
- Promote color resolving to full resolution
- They still use four nearby in resolve

Temporal filter + 1 ray/pixel in half resolution + 4 resolve samples in **half** resolution Temporal filter + 1 ray/pixel in half resolution + 4 resolve samples in **full** resolution

Filtered Importance Sampling

- Pretend rays are cones
- Wider intersection point

Filtered Importance Sampling

- Use mipmapped values in resolve
- Mip level depend on
 - Roughness
 - Distance to hit
- Mix with monte carlo approach

Previous result (Monte carlo)

Mixed with cone sampling

Performance

- PS4, 1600x900
- Benchmark parameters
 - Ray trace once per half pixel
 - Use four nearby rays in color resolve
 - <20% HQ rays
- Takes 2.19 ms
 - Most expensive step: 0.8 ms in color resolving

However, screen space reflection is not perfect

Hidden Geometry Problem

Edge Cutoff

Edge Fading

Summary

- Limited data, make the best of it
- Many tricks and optimisations
- Hiding some artifacts, can achieve useful result

Video

Bonus Slides!

Usage Today

.....

Metal Gear Solid V: The Phantom Pain

Metal Gear Solid V: The Phantom Pain

Crysis 2 (introduced technique)

RLR on

Crysis 2 (introduced technique)

Mirror's Edge Catalyst (pre-release)

Mirror's Edge Catalyst (pre-release)