
Database Tutorial 5: Relational Algebra and Transactions

Sample Solution - 7 December 2018

1. Let’s assume a following schema

Airports(code, city)

FlightCodes(code, airlineName)

Flights(departureAirport, destinationAirport, departureTime, arrivalTime, code)

departureAirport → Airports.code

destinationAirport → Airports.code

code → FlightCodes.code

a. Below is an SQL query that finds all airports that have departures or arrivals (or both) of

flights operated by Lufthansa or SAS (or both). Express this query by a relational algebra

expression.

SELECT DISTINCT served

FROM ((SELECT destinationAirport AS served, airlineName

 FROM FlightCodes JOIN Flights ON Flights.code = FlightCodes.code)

UNION

(SELECT departureAirport AS served, airlineName

 FROM FlightCodes JOIN Flights ON Flights.code = FlightCodes.code)) AS D

WHERE D.airlineName = ‘Lufthansa’ OR D.airlineName = ‘SAS’;

b. Translate the following relational algebra expression to an SQL query:

2. A common situation in flight booking is the following:

• User A wants to find a flight from X to Y.

• The system shows available flights. One of them has only one seat left.

• Before A makes a choice, user B also wants to find a flight from X to Y.

δ(πserved(σairlineName=’Lufthansa’ OR airlineName=’SAS’(ρD(served,airlineName)(

πdestinationAirport, airlineName(FlightCodes Flights.code=FlightCodes.code Flights)

U

πdepartureAirport, airlineName(FlightCodes Flights.code=FlightCodes.code Flights)

))))

πFirst.departureTime, Second.arrivalTime

((ρFirst(Flights)) First.destinationAirport=Second.departureAirport(ρSecond(Flights)))

SELECT First.departureTime, Second.arrivalTime

FROM Flights AS First JOIN Flights AS Second

ON First.destinationAirport = Second.departureAirport;

• The system shows the same list of flights to B.

• B selects immediately the flight that has only one seat left.

• After this, A tries to select the same flight, but this fails, because B has taken the last seat.

Explain this situation in transaction concepts:

• What kind of interference has taken place (dirty or unrepeatable read, phantom, …)?

• Which isolation levels would permit this situation?

3. Authorization, SQL Injection, Transactions. Consider an existing database with the following

database definition in a PostgreSQL DBMS:

a. A database user “Alice” is granted the following permissions:

Alice now executes the following SQL statement:

We want Alice to only have exactly the privileges that are necessary to complete this SQL

statement. Does Alice have too few, exactly enough, or too many privileges? What minimal

set of permissions should she be granted instead, if not the same as listed above?

INSERT INTO LogBook

SELECT u.id, 201701101400, u.name

FROM (UserStatus us JOIN Users u ON us.id = u.id)

WHERE us.loggedin = TRUE;

Non-repeatable read, permitted by READ COMMITTED and READ UNCOMMITED

CREATE TABLE Users (

id INTEGER PRIMARY KEY,

name TEXT,

password TEXT

);

CREATE TABLE UserStatus (

id INTEGER PRIMARY KEY REFERENCES Users,

loggedin BOOLEAN NOT NULL

);

CREATE TABLE Logbook (

id INTEGER REFERENCES Users,

timestamp INTEGER,

name TEXT,

PRIMARY KEY (id, timestamp)

);

GRANT SELECT(id, name, password) ON Users TO Alice;

GRANT SELECT(id, loggedin) ON UserStatus TO Alice;

GRANT SELECT(id, timestamp, name) ON LogBook TO Alice;

GRANT INSERT(id, timestamp, name) ON LogBook TO Alice;

b. Users of a web application are allowed to query this database for a certain user id. This

function implemented in JDBC using the following code fragment:

Does this code contain an SQL injection vulnerability? If it does not, why not? If it does, how

would you correct the code?

c. The JDBC code below is supposed to run a batch job in the following way: Loop through an

array of users, set each users password hash to a certain value and add a logbook message

for that user. If any of the users do not exist, the whole batch job should be rolled back.

The queries seem to work fine, and if there is an invalid id in the array the error message is

printed, but all the other ids in the array are still changed! What goes wrong and how can it

be fixed (Hint: two separate things need to be fixed, think about what happens both before

and after the error).

int[] blockList = {11,42,55}; // Ids to be locked

PreparedStatement update = conn.prepareStatement(

 "UPDATE Users SET password='qiyh4XPJGsOZ2MEAy' WHERE id=?");

PreparedStatement insert = conn.prepareStatement(

 "INSERT INTO Logbook VALUES (?,now(),'Account locked')");

conn.setAutoCommit(false); // Enable transactions

for(int user : blockList){ // For each user in blocklist ...

 update.setInt(1,user);

 insert.setInt(1,user);

Alice has too many privileges, since she does not need to read the password in the

Users table, nor the LogBook entries. The minimally required set of permissions is:

GRANT SELECT(id, name) ON Users TO Alice;

GRANT SELECT(id, loggedin) ON UserStatus TO Alice;

GRANT INSERT(id, timestamp name) ON LogBook TO Alice;

…

String query=

 “SELECT * FROM UserStatus WHERE id = ‘ “ + userinput + “ ‘ ”;

PreparedStatement stmt = conn.prepareStatement(query);

ResultSet rs = stmt.executeQuery();

…

Yes this code contains an SQL injection vulnerability. The vulnerability can be removed

by either correctly sanitizing or escaping the data in the userinput variable. A better

solution is to use a PreparedStatement with placeholder:

…

String query = ”SELECT * FROM UserStatus WHERE id = ?”;

PreparedStatement stmt = conn.preparedStatement(query);

Stmt.setString(1, userinput);

ResultSet rs = stmt.executeQuery();

…

 int res = update.executeUpdate();

 if (res == 0){ // 0 rows affected - user does not exist!

 System.err.println("Error, missing id: "+user);

 conn.rollback();

 } else{

 insert.executeUpdate();

 conn.commit();

 }

}

The two problems in the code are:

1. A commit is performed at the end of each iteration, starting a new transaction. The

commit needs to be moved outside the loop.

2. The rollback does not terminate the loop, so it keeps going in a new transaction. Triggering

the error needs to terminate the loop using break/return/throw.

Correct code:

for(int user : blockList){

 update.setInt(1,user);

 insert.setInt(1,user);

 int res = update.executeUpdate();

 if (res == 0){

 System.err.println("error, missing id: "+user);

 conn.rollback();

 break;

 }

 insert.executeUpdate();

}

conn.commit();

