
Database Tutorial 4: Constraints, Triggers, and Views

Sample Solution - 30 November 2018

1. Consider an online bookshop which sometimes promotes books by displaying them on the front

page of their website. Their web application uses a database created in PostgreSQL using the

following statements:

CREATE TABLE Books (

id INTEGER PRIMARY KEY,

category TEXT,

price FLOAT CHECK (price>0),

promoted BOOLEAN DEFAULT True

) ;

INSERT INTO Books (id, category, price) VALUES (1, 'Dictionary', 100);

INSERT INTO Books (id, category, price) VALUES (2, 'Dictionary', 150);

INSERT INTO Books (id, category, price) VALUES (3, 'Science', 120);

INSERT INTO Books (id, category, price) VALUES (4, 'Science', 190);

INSERT INTO Books (id, category, price) VALUES (5, 'Science', 320);

a. Create a new VIEW called “PromotionSummary” which outputs 3 columns named

“category”, “minprice” and “maxprice” containing the category name, minimum price of all

promoted books and maximum price of all promoted books. A promoted book has its

“promoted” attribute set to True.

b. Create a trigger so that, when a tuple from the “PromotionSummary” view is deleted, all

Books from the corresponding category have their “promoted” attribute set to False. E.g. if

the entry in “PromotionSummary” for category “Novel” is deleted, all entries in “Books” with

category “Novel” have their “promoted” attribute set to False.

CREATE OR REPLACE FUNCTION demoteBooks () RETURNS TRIGGER AS $$

BEGIN

UPDATE Books SET promoted = False WHERE category = OLD.category;

RETURN OLD;

END

$$ LANGUAGE 'plpgsql ';

CREATE TRIGGER demoteBooksTrigger INSTEAD OF DELETE ON PromotionSummary

FOR EACH ROW

EXECUTE PROCEDURE demoteBooks();

CREATE VIEW PromotionSummary AS

SELECT category, MIN(price) AS minprice , MAX(price) AS maxprice

FROM Books

WHERE promoted

GROUP BY category;

2. Database integrity can be improved by many techniques:

• views: virtual tables that show useful information that would create redundancy if stored in

the actual tables

• constraints: conditions on attribute values and tuples

• triggers: automated checks and actions performed on entire tables.

As a general rule, these methods should be applied in the above order: if a view can do the job,

constraints are not needed, and if constraints can do the job, triggers are not needed. The task in

this question is to show how to guarantee integrity in an exam question database. The attributes

that are needed are the following:

• an Exam has a date and a course code, as well as a total number of points

• a Question belongs to a certain exam, has its own question number, a number of points, and

a text (the question itself)

Your task is to give a database definition (tables, triggers, and views) that guarantees the

following integrity conditions:

a. A course can have maximally one exam on the same day.

b. The number of points in an exam is the sum of the numbers of points in its questions.

c. An exam question is uniquely determined by its number, together with the exam to which it

belongs.

d. An exam may not use the same question text twice.

e. The number of questions in an exam may not exceed 10.

f. The number of questions in an exam must be at least 5. (Hint: can be tricky!)

Write your answer as SQL code (except for question f) for tables, views, and triggers, marking

with letters ((a), (b), etc.) which part of the code guarantees which property. You can get 2 points

for each of the properties. Unnecessarily complicated answers (e.g. using a trigger when a

constraint would be enough) may reduce points.

CREATE TABLE Courses (

code TEXT PRIMARY KEY

);

CREATE TABLE Exams (

course TEXT NOT NULL REFERENCES Courses(code),

date DATE NOT NULL,

PRIMARY KEY (course, date) (a)

);

CREATE TABLE Questions (

course TEXT,

date DATE,

qnumber INT,

qtext TEXT NOT NULL,

points FLOAT NOT NULL,

FOREIGN KEY (course, date) REFERENCES Exams(course, date),

PRIMARY KEY (course, date, qnumber), (c)

UNIQUE (course, date, qtext), (d)

CHECK (qnumber>=1 AND qnumber <=10) (e)

);

CREATE View ExamPoints AS ((b)

SELECT course, date, SUM(points) AS total

FROM Questions

GROUP BY (course, date)

);

Possible solutions to (f):

• Create a table PlannedQuestions to hold planned questions temporary (identical to

Questions, but without a reference to Exams), create a trigger that after insert into

Exams raises an error message if the number of planned questions for that exam is

less than 5, otherwise moves the planned questions to the real questions table. After

that you still need to create a trigger to prevent a questions being deleted (or moved

using UPDATE) from an exam if the exam would have less than 5 questions after the

operation.

• Create a view ValidExams that excludes exams with fewer than five questions (and

maybe a separate view for invalid exams. Then when listing exams, only select from

the view.

• Exams has 5*2 columns for five questions (and points), which are NOT NULL; extra

questions are added separately. This could potentially be very messy.

3. In the year 2127, the first spaceship to colonize Mars carries 1337 colonists. When they arrive on

the planet, they will build a city and live there. Following democratic principles, the spaceship

captain, captain Picard, asks you to improve an SQL database to help with the voting process. The

existing SQL database was created with the following statement:

CREATE TABLE Votes (

cityname TEXT PRIMARY KEY ,

votecount INT

) ;

-- To add a vote , you can use either INSERT or UPDATE , as shown below:

INSERT INTO Votes (cityname , votecount) VALUES('Mars City One' , 34) ;

INSERT INTO Votes (cityname , votecount) VALUES('New Gothenburg ' , 11);

INSERT INTO Votes (cityname , votecount) VALUES('Picardia ' , 1);

UPDATE Votes SET votecount = votecount +3 WHERE cityname='New Gothenburg ';

a. Create a new VIEW called “VoteSummary” which outputs 2 columns named “cityname” and

“percentage” containing the cityname and percentage of votes cast for that cityname. The

output is sorted according to the votecount, highest votecount first. After the example votes

above, there would be 34 votes for “Mars City One” out of a total of 49 votes, so the top row

of the “VoteSummary” VIEW would be (’Mars City One’, 69.3878). There is no need to round

of the percentage.

b. Create a trigger to update the “Votes” table, to keep track of how many colonists have not

voted yet. This count will appear next to the special cityname “<not voted>”. In the example

above, 49 votes have been cast out of 1337 possible votes. This means the trigger needs to

create or update an entry with cityname “<not voted>” and votecount 1288 (= 1337 - 49).

Keep in mind that you need to create this entry if it does not exist yet. There is no need for a

trigger on DELETE.

CREATE OR REPLACE VIEW VoteSummary AS

SELECT cityname, 100.0 * votecount / (SELECT SUM (votecount) FROM Votes) AS

percentage

FROM Votes

ORDER BY percentage DESC;

CREATE OR REPLACE FUNCTION fixUnknownVotes () RETURNS TRIGGER AS $$

BEGIN

IF NOT EXISTS (SELECT * FROM Votes WHERE cityname = '<not voted >')

THEN

INSERT INTO Votes (cityname, votecount) VALUES ('<not voted >', 0);

END IF;

UPDATE Votes SET votecount = 1337 -

(SELECT SUM(votecount) FROM Votes WHERE cityname <> '<not voted>')

WHERE cityname = '<not voted >';

RETURN NEW;

END

$$ LANGUAGE 'plpgsql ';

CREATE TRIGGER fixUnknownVotesTrigger AFTER INSERT OR UPDATE ON Votes

FOR EACH ROW WHEN (NEW. cityname <> '<not voted >')

EXECUTE PROCEDURE fixUnknownVotes ();

We can also write the function and the trigger differently (see the following).

Alternative solution (not using WHEN):

CREATE OR REPLACE FUNCTION updateNotVoted() RETURNS TRIGGER AS $$

BEGIN

 IF NEW.cityname <> '<not voted>'

 THEN

 IF NOT EXISTS (SELECT * FROM Votes WHERE cityname = '<not voted>')

 THEN

 INSERT INTO Votes (cityname, votecount) VALUES ('<not voted>', 0);

 END IF;

 UPDATE Votes SET votecount = 1337-(SELECT SUM(votecount) FROM Votes

WHERE cityname <> '<not voted>') WHERE cityname = '<not voted>';

 RETURN NEW;

 ELSE

 RETURN NULL;

 END IF;

END

$$ LANGUAGE 'plpgsql';

CREATE TRIGGER updateNotVotedTrigger

 AFTER INSERT OR UPDATE ON Votes

 FOR EACH ROW

 EXECUTE PROCEDURE updateNotVoted();

Note that creating a View would be a much better solution to this problem! Just make

the view show the actual votes table, and add a single row for the <not voted> using

UNION.

