
1 /*

2 Databases Tutorial 1: SQL

3 Sample Solution - 2018-11-09

4 */

5

6 ---

7 /* Question 1: Basic

8 Given the following departments table:

9

10 CREATE TABLE Departments(

11 department_id INT NOT NULL,

12 department_name CHAR(50) NOT NULL,

13 CONSTRAINT departments_pk PRIMARY KEY (department_id)

14);

15

16 Create an SQL table called employees that stores employee number, employee name,

department, and salary information. The primary key for the employees table should

be the employee number. Create a foreign key on the employees table that references

the departments table based on the department_id field.

17 */

18

19 CREATE TABLE Employees (

20 employee_number INT PRIMARY KEY,

21 employee_name TEXT NOT NULL,

22 department INT REFERENCES Departments(department_id),

23 salary INT NOT NULL

24);

25

26 -- Or the following, if we want to use the "constraint form" explicitly.

27

28 CREATE TABLE Employees (

29 employee_number INT NOT NULL,

30 employee_name TEXT NOT NULL,

31 department INT NOT NULL,

32 salary INT NOT NULL,

33 CONSTRAINT employees_pk PRIMARY KEY (employee_number),

34 CONSTRAINT fk_departments FOREIGN KEY (department) REFERENCES Departments(

department_id)

35);

36

37 ---

38 /* Question 2: Supplier

39

40 Given the following schema:

41 Suppliers(_sid:integer_, sname:string, city:string, street:string)

42 Parts(_pid:integer_, pname:string, color:string)

43 Catalog(_sid:integer_, _pid:integer_, cost:real)

44

45 Find the names of all suppliers who have supplied a non-blue part.

46 */

47

48 SELECT S.sname

49 FROM Suppliers S

50 WHERE S.sid IN (SELECT C.sid

51 FROM Catalog C

52 WHERE C.pid IN (SELECT P.pid

53 FROM Parts P

54 WHERE P.color <> 'Blue'

55)

56)

57 ;

58

59 --

60

61 /* Question 3: Employees

62 Consider the table Employees(_empId_, name, department, salary). The columns empId

and name are of type text, while department and salary are of type integer.

63 */

64

65 -- a. Find the employees (from table employees) who get higher salary than anyone in

the department 5.

-1-

66

67 SELECT E.empId

68 FROM Employees E

69 WHERE NOT EXISTS (SELECT *

70 FROM Employees S

71 WHERE S.department = 5 AND S.salary >= E.salary

72)

73 ;

74

75 -- b. Find max salary from each department.

76

77 SELECT department, max(salary)

78 FROM Employees

79 GROUP BY department

80 ;

81

82 -- c. Find all employee records containing the word "Joe", regardless of whether it

was stored as JOE, Joe, or joe.

83

84 SELECT *

85 FROM Employees

86 WHERE UPPER(name) LIKE '%JOE%'

87 ;

88

89 ---

90 /* Question 4: Company

91

92 For the following relation schema:

93 Employees(_employeeId_, employeeName, street, city)

94 Companies(_companyId_, companyName, city)

95 Works(_employee_, _company_, salary)

96 Manages(_manager_, _employee_)

97

98 The information on which company an employee works for and the current salary is

stored in relation works. Assume that all people work for at most one company. The

information on which employees have manager roles and who do they manage is stored

in relation manages.

99

100 */

101

102 -- a. Find the names, street address, and cities of residence for all employees who

work for 'First Bank Corporation' and earn more than $10000.

103

104 SELECT E.employeeName, E.street, E.city

105 FROM Employees E, Works W

106 WHERE E.employeeId = W.employee AND W.company IN (SELECT companyId

107 FROM Companies

108 WHERE companyName = 'First Bank Corporation'

109)

110 AND W.salary > 10000

111 ;

112

113 -- b. Find the names of all employees in the database who live in the same cities as

the companies for which they work.

114

115 SELECT E.employeeName

116 FROM Employees E, Works W, Companies C

117 WHERE E.employeeId = W.employee

118 AND W.company = C.companyId

119 AND E.city = C.city

120 ;

121

122 -- c. Find the names of all employees in the database who live in the same cities

and on the same streets as do their managers.

123

124 SELECT E.employeeName

125 FROM Employees E, Employees F, Manages M

126 WHERE E.employeeId = M.employee

127 AND M.manager = F.employeeId

128 AND E.city = F.city

129 AND E.street = F.street

-2-

130 ;

131

132 -- OR

133

134 SELECT TEMP.employee

135 FROM (SELECT F.employeeName AS manager, E.employeeName AS employee, F.city AS

manager_city, F.street AS manager_street, E.city AS employee_city, E.street AS

employee_street

136 FROM Manages M, Employees E, Employees F

137 WHERE M.employee = E.employeeId

138 AND M.manager = F.employeeId

139) AS TEMP

140 WHERE TEMP.manager_city = TEMP.employee_city

141 AND TEMP.manager_street = TEMP.employee_street;

142 ;

143

144 -- d. Find the names of all employees in the database who earn more than every

employee of 'Small Bank Corporation'.

145

146 SELECT E.employeeName

147 FROM Employees E, Works W

148 WHERE E.employeeId = W.employee AND W.salary > (SELECT max(salary)

149 FROM Works W, Companies C

150 WHERE W.company = C.companyId AND C.companyName = 'Small Bank Corporation'

151)

152 ;

153

154 -- Could also use "ALL" operator.

155

156 SELECT E.employeeName

157 FROM Employees E, Works W

158 WHERE E.employeeId = W.employee AND W.salary > ALL (SELECT salary

159 FROM Works W, Companies C

160 WHERE W.company = C.companyId AND C.companyName = 'Small Bank Corporation'

161)

162 ;

163

164 -- e. Find the name of the company that has the smallest payroll (or total salaries

of employees).

165

166 SELECT companyName

167 FROM Companies C, (SELECT company

168 FROM Works W

169 GROUP BY company

170 HAVING sum(salary) <= ALL (SELECT sum(salary) FROM Works GROUP BY company)

171) AS TEMP

172 WHERE C.companyId = TEMP.company;

173

174 -- f. Assuming that the table employee had an email column with NULL values, write a

query to update the values.

175

176 UPDATE Employees

177 SET email = '...@xxx.com'

178 WHERE employeeId = '..'

179 ;

180

181 -- g. How do you find all employees who are not managers?

182

183 SELECT E.employeeId, E.employeeName

184 FROM Employees E

185 WHERE E.EmployeeId NOT IN (SELECT DISTINCT manager FROM Manages)

186 ;

187

188 ---

189

190 /* Question 5: Hospital

191

192 A database system used by a hospital to record information about patients and wards

has the following relations:

193

194 Wards(number, numBeds)

-3-

195 Patients(pid, name, year, gender)

196 PatientInWard(pid, ward)

197 Tests(patient, testDate, testHour, temperature, heartRate)

198

199 A ward is identified by its number. Attribute numBeds is the number of beds in that

ward. Patients are identified by their personal identification number. The name,

year of birth and gender (`M' or `F') of each patient is stored in the Patients

relation.

200

201 The ward to which each patient is assigned is stored in relation PatientInWard.

202

203 During their stay in hospital, patients will undergo routine tests. The date and

hour of each occasion when these tests are performed on a patient are recorded, and

for each of these tests the patient's temperature and heart rate are measured and

recorded in the database. A patient will normally undergo these routine tests

several times during their stay in hospital.

204 */

205

206 -- a. Find the temperature and heart rate measured in each test carried out on

patients born before 1950

207

208 SELECT temperature, heartRate

209 FROM Tests T, Patients P

210 WHERE T.patient = P.pid AND P.year < 1950

211 ;

212

213 -- b. create a view FreeBeds(ward numBeds) where ward is a ward number, and numBeds

is the number of available beds in that ward

214

215 CREATE VIEW FreeBeds AS

216 SELECT Wards.number AS ward, Wards.numBeds - count(PatientInWard.pid) AS numBeds

217 FROM Wards LEFT OUTER JOIN PatientInWard ON Wards.number = PatientInWard.ward

218 GROUP BY Wards.number

219 ;

220

221 --

222

223 /* Question 7

224

225 We assume that all stars have different names, and that planet names are only unique

within their star-system. A star-system has exactly one star, all planets have

circular orbits around their star at different distances. A planet's position

indicates which order it has in the star-system, e.g. Earth is the 3rd planet around

the Sun, after Mercury and Venus. If a planet has O2 or other gases, it has an

atmosphere. Without an atmosphere, a planet has no gases. The surface of a planet is

either all water, all land, or a combination of water and land, but

226 nothing else.

227

228 Consider the relation

229 Planets(star, name, distance, mass, atmosphere, oxygen, water)

230 */

231

232 -- a. Write an SQL table definition with reasonable types and constraints. Store

distance in millions of km (For Earth, you would store the value 149.6).

233

234 CREATE TABLE Planets(

235 star TEXT NOT NULL,

236 name TEXT NOT NULL,

237 distance REAL NOT NULL CHECK (distance > 0),

238 mass REAL NOT NULL CHECK (mass > 0),

239 atmosphere BOOLEAN NOT NULL,

240 oxygen REAL NOT NULL CHECK ((oxygen = 0 AND NOT atmosphere) OR (atmosphere AND

oxygen >= 0)),

241 water REAL NOT NULL,

242 PRIMARY KEY (star, name),

243 UNIQUE (star, distance)

244);

245

246

247 -- b. Write an SQL query to determine how many planets are in orbits larger than the

orbit of the fictional planet "Duna" of the fictional star "Kerbol".

-4-

248

249 SELECT count(*)

250 FROM Planets

251 WHERE distance > (SELECT distance FROM Planets WHERE star = 'Kerbol' AND name =

'Duna')

252 ;

253

254 /* We define a planet as "habitable" if it satisfies all these conditions:

255 - orbit at a distance (in millions of km) between 100 and 200 (inclusive) from its

star,

256 - has an atmosphere and it has an oxygen percentage between 15% and 25% (inclusive),

257 - has water on its surface.

258 */

259

260 -- c. Write an SQL query which returns the star and name of a planet, as well as a

column status with value "habitable" if the planet is habitable, otherwise

"uninhabitable".

261

262 (SELECT star, name, 'habitable' AS status

263 FROM Planets

264 WHERE distance >= 100 AND

265 distance <= 200 AND

266 atmosphere AND

267 oxygen >= 15 AND

268 oxygen <= 25 AND

269 water > 0

270)

271 UNION

272 (SELECT star, name, 'uninhabitable' AS status

273 FROM Planets

274 WHERE NOT (

275 distance >= 100 AND

276 distance <= 200 AND

277 atmosphere AND

278 oxygen >= 15 AND

279 oxygen <= 25 AND

280 water > 0

281)

282)

283 ;

284

285 -- OR

286

287 WITH Habitables AS (SELECT star, name FROM planets WHERE distance >= 100 AND distance

<= 200 AND atmosphere AND oxygen >= 15 AND oxygen <= 25 AND water > 0)

288 SELECT star, name, 'habitable' AS status

289 FROM Planets

290 WHERE (star, name) IN (SELECT star, name FROM Habitables)

291 UNION

292 SELECT star, name, 'uninhabitable' AS status

293 FROM Planets

294 WHERE (star, name) NOT IN (SELECT star, name FROM Habitables)

295 ;

296

-5-

