
Binary trees

A binary tree is a tree whose every node either branches to two binary trees or is a

leaf, i.e. contains a value. Here is an example of a binary tree

 3

 / \

 1 5

 / \ / \

0 2 4 6

• (A) Design a JSON Schema for representing binary trees. Both the branching

nodes and leafs should carry integer values. An important property is that

each node in the tree either has both a left and a right subtree, or no subtree

at all (not just a left subtree for instance).

o Variant: Make one representation using arrays and one using

key/values for children.

• (B) Show a JSON element representing the above example tree, and which is

valid according to your Schema.

o Variant: Make values in branches optional (but values in leafs should

still be required)

• (C) Write a JSONPath query that returns all leaf elements of a binary tree.

For the above example, it should return 0,1,2,3,4,5,6 (in any order).

o Variant: Find all data values of left subtrees (0,1,4)

o Variant: Find all values in the third level of the tree (0,2,4,6)

o Variant: Find all values greater than 3

o Variant: Find all values greater than the value in the root node (should

work for all trees)

Flights

Given the following schema:

Airports(_code,city)

FlightCodes(_code, airlineName)

Flights(departureAirport, destinationAirport, _code)

 departureAirport -> Airports.code

 destinationAirport -> Airports.code

 code -> FlightCodes.code

Write a JSON Schema corresponding to this database schema. Translate the

relational schema as faithfully as possible (there is nothing you can do about the

references, but can you have primary keys in JSON?). Also write a JSON document

with the data in the table below, which validates with your schema.

Hint: You can use the "additionalProperties" keyword to specify a schema for all

properties of an object (except the ones mentioned in "properties").

Flight code Airline Dep.city Dep.airport Arr.city Arr.airport

SK111 SAS Gothenburg GOT Frankfurt FRA

AF222 Air France Paris ORY Malta MLA

AB222 Air Berlin Frankfurt FRA Munich MUC

KM111 Air Malta Munich MUC Malta MLA

Applications

Below is some JSON data. It has been compiled by translating this schema in the most direct

way possible:

Applicants(appNum, name)

Choices(applicant, code, choiceNum, meritScore)

 applicant -> Applicants.appNum

{

 "Applicants": [

 {"appNum":"a1", "name": "Andersson"},

 {"appNum":"a2", "name": "Jonsson"},

 {"appNum":"a3", "name": "Larsson"}

],

 "Choices": [

 {"applicant":"a1","code":"MPSOF","choiceNum":1,"meritScore":750},

 {"applicant":"a1","code":"MPALG","choiceNum":2,"meritScore":750},

 {"applicant":"a1","code":"MPCSN","choiceNum":3,"meritScore":800},

 {"applicant":"a2","code":"MPALG","choiceNum":1,"meritScore":700},

 {"applicant":"a3","code":"MPCSN","choiceNum":1,"meritScore":850},

 {"applicant":"a3","code":"MPALG","choiceNum":2,"meritScore":850}

]

}

(A) Can you rewrite the data into a more semi-structured format that uses the fact that

there are no tables? Here are some suggestions:

• Avoid repeating applicant numbers (and the implicit references that exist in the

data)?

• Use key/value pairs instead of an array of rows?

• Maybe choice numbers are not needed?

(B) Write a JSON Schema for your modified data.

(C) Write a JSONPath query on your modified data that finds all "choices" where

choiceNum is 1 and meritScore is greater than 800.

