

Functional Dependencies

Domain -> ER -> Schema

Definition of functional dependency

If two tuples of relation **R** agree on all the attributes $A_1 A_2 \dots A_n$ then they must also agree on attribute B

$$A_1 A_2 \dots A_n \rightarrow B$$

Name	Mother	Grandmother
Stefan	XXX	XXX
Stefan	XXX	XXX

Name → Name

Name	Mother	Grandmother
Stefan	XXX	XXX
Stefan	XXX	XXX

Trivially true since nothing new is asserted.

Name → Mother

Name	Mother	Grandmother
Stefan	Margareta	XXX
Stefan	Margareta	XXX

Everyone has a mother.

Mother → Grandmother

Name	Mother	Grandmother
Stefan	Margareta	Ulla
Stefan	Margareta	Ulla

Every mother has a mother.

Name → Grandmother

Name	Mother	Grandmother
Stefan	Margareta	Ulla
Stefan	Margareta	Ulla

By transitivity, everyone has a grandmother.

The dependency part of FDs

A functional dependency on the form " $A_1 A_2 \dots A_n \Rightarrow B$ " ...

- ... where $B \in \{A_1 A_2 \dots A_n\}$ is called trivial.
 - Name → Name
 - Name Mother → Name

- ... and another FD "B \rightarrow C" can be combined into "A₁ A₂ ... A_n \rightarrow C".
 - Name → Mother & Mother → Grandmother ⇒ Name → Grandmother

Finding FDs in a domain description

As an example, consider a course currently running at some university. Each period, i.e. spring or autumn, a course has a number of students enrolled and a teacher that is responsible for it. Lectures are held in some room at most once a day under a certain period, and rooms have a limited number of seats.

Finding FDs in a domain description

As an example, consider a course currently running at some university. Each period, i.e. spring or autumn, a course has a number of students enrolled and a teacher that is responsible for it. Lectures are held in some room at most once a day under a certain period, and rooms have a limited number of seats.

Course (name, #students, teacher, period, day, room, #seats)

name, period - #students, teacher

Finding FDs in a domain description

As an example, consider a course currently running at some university. Each period, i.e. spring or autumn, a course has a number of students enrolled and a teacher that is responsible for it. Lectures are held in some room at most once a day under a certain period, and rooms have a limited number of seats.

Course (name, #students, teacher, period, day, room, #seats)

name, period → #students, teacher
name, period, day → room
room → #seats

The dependency part of FDs

 $A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m$ is equivalent to $A_1 A_2 \cdots A_n \rightarrow B_1$ $A_1 A_2 \cdots A_n \rightarrow B_2$ $A_1 A_2 \cdots A_n \rightarrow B_m$

The functional part of FDs

A functional dependency of " $A_1 A_2 \dots A_n \Rightarrow B$ " can conceptually be thought of partial function from $A_1 A_2 \dots A_n$ to B

Note: The function is a mathematical one in the sense that it always returns the same result for the same inputs.

Note: Unlike a function, a functional dependency does not inspect the values of $\{A_1, A_2, ..., A_n\}$ to produce the value B, it looks up its value in some table.

Note: Partial means that it may have no result for some inputs.

The functional part of FDs

As an example, consider a course currently running at some university. Each period, i.e. spring or autumn, a course has a number of students enrolled and a teacher that is responsible for it. Lectures are held in some room **at most** once a day under a certain period, and rooms have a limited number of seats.

Course (name, #students, teacher, period, day, room, #seats)

```
name, period → #students, teacher
name, period, day → room
room → #seats
```

Movies (Title, Year, Length, Genre, Studio, Star)

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

Trying to do to much leads to anomalies

- 1. **<u>Redundancy</u>**. Information about a movies length, genre, and studio is repeated for each actor/actress.
- 2. **Update Anomalies**. If we change, for example, the genre of Star Wars to documentary, then we must change several rows. Failing to update all rows will lead to inconsistencies in our relation.
- 3. <u>Deletion Anomalies</u>. If we want to remove Vivien Leigh as an actress for Gone With the Wind then we would also lose all other information about the movie.

Keys to the rescue

The set of attributes **A** is a key for a relation **R** if and only if:

- <u>Complete</u>. The attributes of A functionally determine all other attributes of *R*, that is, the closure of *A* contains all attributes of *R*.
- 2. <u>Minimal</u>. There does not exist a proper subset of **A** that functionally determine all other attributes of **R**, that is, a key must be *minimal*.

Keys that are not minimal are often referred to as super keys.

Finding the closure of attributes

Given a set of attributes **A** and a set of FDs **F**, we compute the closure **A**+ of **A** by:

- 1. Search for some for some FD " $B_1 \dots B_m \rightarrow C$ " such that $B_1 \dots B_m \subseteq A$ and $C \notin A$.
- 2. Add C to A.
- 3. Repeat until no additional FDs satisfying the second step can be found.

R (A,B,C,D,...) with FDs $A \rightarrow B \& \underline{A,B \rightarrow C} \& \dots$

? FDs ?

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

Title, Year → Length, Genre, Studio

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

{ Title, Year }+ = { Title, Year, Length, Genre, Studio }

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

Key = { Title, Year, Star }

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

Normal form

The accepted way to eliminate anomalies is to *decompose* relations into NF, and typically involves splitting a relation into two or more smaller relations.

		Title	Yea	r Length	Genre	Studio	Star		
		Star War	s 1977	' 124	SciFi	Fox	Carrie Fishe	er	
		÷			n		÷		
Title	Year	Length	Genre	Studio			Title	Year	Star
Oten Man	4077	404	0:5	Env			Star Wars	1977	Carrie Fisher
Star wars	1977	124	SCIFI	FOX			:		:
:				:					I

Boyce-Codd Normal Form

A relation **R** is in Boyce-Codd Normal Form if and only if:

• Whenever there is a non-trivial FD " $A_1 A_2 \dots A_n \rightarrow B$ " for **R**, it is the case that $\{A_1 A_2 \dots A_n\}$ is a *superkey* for **R**.

Title, Year → Length, Genre, Studio

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

Decompose to Boyce-Codd Normal Form

Given a relation **R** and a set of FDs **F**, we compute the BCNF of **R** by:

- 1. Check if **R** is in BCNF, if so we are done.
- 2. Find <u>an</u> FD " $\mathbf{A} \rightarrow \mathbf{B}$ " in **F** that violates BCNF for **R** and
 - a. Compute **A**+.
 - b. Create a new relation $\mathbf{R}_1 = \mathbf{A} + \mathbf{R}_2$
 - c. Create a new relation $\mathbf{R}_2 = \mathbf{A} \cup (\mathbf{R} / \mathbf{A} +)$
- 3. Recursively apply this algorithm to \mathbf{R}_1 and \mathbf{R}_2 .

Title, Year → Length, Genre, Studio

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

Step 1 & 2: Find violating FD

{ Title, Year }+ = { Title, Year, Length, Genre, Studio }

Title	Year	Length	Genre	Studio	Star
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	Drama	MGM	Vivien Leigh
Wayne's World	1992	95	Comedy	Paramount	Dana Carvey
Wayne's World	1992	95	Comedy	Paramount	Mike Meyers

Step 2 a: Closure of said FD

$\mathbf{R}_1 = \{ \text{ Title, Year } \}$ +

Title	Year	Length	Genre	Studio
Star Wars	1977	124	SciFi	Fox
Gone With the Wind	1939	231	Drama	MGM
Wayne's World	1992	95	Comedy	Paramount

Step 2 b: Create relation from closure

$\mathbf{R}_2 = \{ \text{ Title, Year } \} \cup (\text{Movies} / \{ \text{ Title, Year } \} +)$

(Title, Year) → R1.(Title, Year)

Title	Year	Star
Star Wars	1977	Carrie Fisher
Star Wars	1977	Mark Hamill
Star Wars	1977	Harrison Ford
:		÷

Step 2 c: Create relation from leftovers

Title	Year	Length		Genre	Studio	
Star Wars	1977	124	Sc	xiFi	Fox	
Gone With the Wind	1939	231	Dr	ama	MGM	
Wayne's World	1992	95	Сс	omedy	Paramount	
			-			
Title	Year	Star				
Star Wars	1977	Carrie Fishe	r	1. N	lo Redundano	CV
Star Wars	1977	Mark Hamill				
Star Wars	1977	Harrison For	ď	2. <u>N</u>	lo Update An	omalies.
Gone With the Wind	1939	Vivien Leigh		2	la Dalation A	nomalias
Wayne's World	1992	Dana Carvey	у	э. <u>г</u>	IO DEIELION A	<u>nomanes</u> .
Wayne's World	1992	Mike Meyers	6			

No more anomalies, but ...

There's no guarantee that dependencies are preserved in the smaller relations.

Title	Theater	City
Antz	Guild	Boston

- FD: Theater → City Title, City → Theater
- Keys: { Title, City } & { Title, Theater }

No more anomalies, but ...

There's no guarantee that dependencies are preserved in the smaller relations.

Keys: { Title, City } & { Title, Theater }

No more anomalies, but ...

There's no guarantee that dependencies are preserved in the smaller relations.

First, Second, and Third Normal Form

1 < 2 < 3

First Normal Form

A relation is in 1NF if and only if the domain of each attribute contains only *atomic* values, and the value of each attribute contains only a single value from that domain.

			ID	Name	Phone 1	Phone 2
			1	Markus	555-861	192-122
ID	Name	Phone	2	Selpi	555-403	
1	Markus	555-861, 192-122	ID	Name	Phone	
2	Selpi	555-403	1	Markus	555 861	
	•	•	•	IVIAI KUS	555-001	
			1	Markus	192-122	
			2	Selpi	555-403	

Second Normal Form

A relation is in 2NF if and only if it is in 1NF and there's no non-prime attributes determined by a subset of some key, where non-prime means "attribute that's not part of any key for the relation".

				Manufacturer	Headquarters
			~	Dent-o-Fresh	USA
Manufacturer	ltem	Headquarters	_ /	Hoch	Germany
Dent-o-Fresh	EZ-Brush	USA			
Hoch	Toothmaster	Germany		Manufacturer	ltem
	TOOLIIIIdalei	Germany		Dent-o-Fresh	EZ-Brush
FD : Manufa	cturer → Hea	Hoch	Toothmaster		
Kovillaput		2			

Third Normal Form

A relation is in 3NF if and only if it is in 2NF and						ament	Year	Winner
all of its attribut	es are	determin	ed only by th	le	Indiana	Closed	1998	AI
keys of that rela	ation, n	ot by nor	ı-prime attrib	utes.	Indiana	Closed	1999	Chip
					Clevelar	nd Open	1998	Alice
Tournament	Year	Winner	Birthday				_	
Indiana Closed	1998	AI	21 Jul. 1975	AND		Winne	r E	Birthday
Indiana Closed	1999	Chip	14 Mar. 1977			AI	21 、	Jul. 1975
Cleveland Open	1998	Alice	21 Sep. 1975			Chip	14	Mar. 1977
FD : Winner → Birthday & Tournament, Year → Winner						Alice	21 \$	Sep. 1975

1

1

Key : { Tournament, Year }

Third Normal Form

A relation **R** is in 3NF if and only if:

• Whenever there is a non-trivial FD " $A_1 A_2 \dots A_n \rightarrow B$ " for **R**, it is the case that $\{A_1 A_2 \dots A_n\}$ is a *superkey* for **R** or **B** is part of some key.

Given a relation **R** and a set of FDs **F**, we compute the 3NF of **R** by:

- 1. Check if **R** is in 3NF, if so we are done.
- 2. For each functional dependency " $A \rightarrow B$ " in **F** we create a relation from **A** U **B**.
- 3. If none of the sets of relations from the second step is a superkey for **R**, add another relation whose schema is a key for **R**.

As an example, consider **R** (A, B, C, D, E) and FDs "A B \rightarrow C", "C \rightarrow B", and "A \rightarrow D".

As an example, consider **R** (A, B, C, D, E) and FDs "A B \rightarrow C", "C \rightarrow B", and "A \rightarrow D".

{ A, B }+ = { A, B, C, D } { C }+ = { C, B }

 $\{ A \} + = \{ A, D \}$

 \Rightarrow Keys are { A, B, E } or { A, C, E }.

So "A \rightarrow D" violates 3NF since { A } is not a super key and D is not part of a key.

Step 1: Already in 3NF?

As an example, consider **R** (A, B, C, D, E) and FDs "A B \rightarrow C", "C \rightarrow B", and "A \rightarrow D".

 $\begin{array}{ll} A \ B \ \rightarrow \ C & \Rightarrow \ \textbf{R}_1 \left(\ A, \ B, \ C \right) \\ C \ \rightarrow \ B & \Rightarrow \ \textbf{R}_2 \left(\ C, \ B \right) \\ A \ \rightarrow \ D & \Rightarrow \ \textbf{R}_3 \left(\ A, \ D \right) \end{array}$

But no relation contains a key from **R**, so...

Step 2: Relation for each FD

As an example, consider **R** (A, B, C, D, E) and FDs "A B \rightarrow C", "C \rightarrow B", and "A \rightarrow D".

 $\begin{array}{ll} A \ B \ \rightarrow \ C & \Rightarrow \ \textbf{R}_1 \left(\ A, \ B, \ C \right) \\ C \ \rightarrow \ B & \Rightarrow \ \textbf{R}_2 \left(\ C, \ B \right) \\ A \ \rightarrow \ D & \Rightarrow \ \textbf{R}_3 \left(\ A, \ D \right) \end{array}$

... we have to add it $\Rightarrow \mathbf{R}_4$ (A, B, E)

Step 3: Missing key

No missing dependencies, but ...

There's no guarantee that redundancy is eliminated from a relation.

Title	Theater	City
Antz	Guild	Boston
Beez	Guild	Boston

- FD: Theater → City Title, City → Theater
- Keys: { Title, City } & { Title, Theater }

The End