DA357/DIT621 — Databases

Lecture 11 — Efficiency, Semi-structured Data Model, NoSQL and XML

Jonas Duregard

Efficiency of databases

In this course we do not talk a lot about efficiency, primarily for two reasons:

1. Predicting database performance is difficult due to automatic optimizations
* Writing a more complicated query for efficiency may make no difference
e Worse: It may degrade performance because the DBMS fails to optimize it

2. Premature optimization is a problem
* A lot of people worry about performance when they should be worrying
about correctness and ease of use (and productivity)
» A good approach to efficiency in most cases: Write a simple and elegant
solution. If it is too slow, write a messy but hopefully efficient solution
e Use the simple solution as a reference to test the messy one

A famous quote (my emphasis)

"Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and these
attempts at efficiency actually have a strong negative impact when
debugging and maintenance are considered. We should forget about small
efficiencies, say about 97% of the time: premature optimization is the root
of all evil. Yet we should not pass up our opportunities in that critical 3%."

- Donald Knuth (1974)

About complexity of database operations

* Analyzing database operations using asymptotic complexity (O-notation) can
be misleading

* The reason is that most work of a typical persistant database is spent on:
* Disk access (reading/writing data from disk)
* Network communication (receiving queries and sending results)

* The former means that rather than the number of rows, we should discuss
how many different disk locations we fetch rows from

* The latter means writing fewer queries is better

General techniques for efficient databases

e Today | will show you two techniques that can be used to make
databases more efficient:

* Indexes
 Materialized views

* Neither of them are "silver bullets"
* All obvious optimizations are done automatically by the DBMS
* Both techniques can inadvertantly degrade performance
e Require careful consideration

Indexes

* | have a large printed collection of karaoke tracks, organized by producing label
e Users typically want to look up tracks by artist or title
* Problem: Searching through the whole collection linearly is time consuming

 Solution: Print two indexes, one where all tracks are ordered by artist and one
where they are ordered by title
e Users can binary search (most of them without knowing it)

 Whenever we add new tracks to the collection, we also need to update
both the indexes

Indexes in SQL

* An index is separate from, but connected to a table
[t is created on a set of columns on that table

* It allows us to quickly find all rows with given values for those columns

* An index on (artist,album) would allow us to quickly find all karaoke
tracks with a certain artist and album name

* How lookups work is DBMS-specific, but hash-tables are typically used
e Created automatically for primary keys and UNIQUE-constraints
» Automatically used when selecting/updating/deleting using WHERE-clauses

» Updated automatically when a row is deleted/updated/inserted
* May make inserts a lot slower

» Uses disk space, often more than the table itself

Why not create all indexes automatically?

 For a table with 10 columns, there are 210-1=1023 possible indexes

» Updating a thousand indexes with each insert/update/delete would
be extremely detrimental to performance

* Disk space usage could suddenly become an issue if you use about
1000 times more space

* Megabytes become gigabytes, gigabytes become terrabytes...

When should indexes be used?

* These conditions give a hint that using indexes may be a good idea:

* You have many rows (if you have a few hundred rows, the extra disk
access for reading the index is more time consuming than a linear lookup)

* Why are you even worrying about performance for hundreds of rows?!
* You are frequently doing lookups/joins etc. on a non-key
* You are not worried about inserts being slower or disk space issues

Creating indexes

 Most DBMS support the statement:
CREATE INDEX index_name ON table(attributes);

* Not part of the SQL standard
e Can be done on existing tables with data (may take some time to create)
e Existing SQL queries do not need to be changed in any way ©

Materialized views

* The views you have been writing are virtual
* They are just a name for a query
e Using a view in a query FROM-clause is the same as using a subquery

e Obvious opportunity for performance gain:
Caching the result of the view could save a lot of time

e Obvious new performance problem:
When the table data is changed, the query result needs to be updated

Materialized views in SQL

* Replace CREATE VIEW by CREATE MATERIALIZED VIEW
* Instead of just writing a query, you create a special kind of table that
is automatically updated to reflect the result of the query
* May have to recompute the whole query when a table is updated

* If updates are more frequent than selections, the materialized
view will be less efficient than a virtual view

Materialized views in postgres

In postgres, things work a bit differently:
* Materialized views are NOT automatically updated
* They reflect only the data that is in the tables when it is created

e User needs to run REFRESH MATERIALIZED VIEW; to update it

e Can be done via a trigger on underlying tables to emulate the
standard behavior (not a FOR EACH ROW trigger though!)

When should materialized views be used?

* You have a very costly query in a view

* One of two situations:
* The underlying tables are rarely modified and view is often selected from
* You are OK with the view showing slightly outdated data (postgres specific)
* The latter could be implemented by scheduling a REFRESH to be done e.g.
once per hour/day/week

 Example: We have a view that shows the number of members in all
Facebook groups, but it doesn't have to be up to this minute

NoSQL databases

Stepping outside the box

e Data does not have to be in tables. How else can we do it?

e Graph databases
e Our data is a graph with nodes

* Key/value stores
e Store all data in a big map, lookup keys and get values
e Simple, efficient, but kind of limited

 Document databases We will focus on this
e Store documents, that in turn contain structures

Semi-structured data (SSD)

* The relational model has a very rich structure
* Allows us to have strong constraints on data

 This structure also limits flexibility
* Much of the design work is centered on deliberately preventing users
from being flexible (by enforcing constraints)
* |n semi-structured data models, the schema is flexible
e Data is still structured
... but the structure is not necessarily uniform across the data
 E.g. data does not fit in tables where every row has the same columns

A different way of structuring data

* Here as a tree of objects, with labels on edges and data in nodes
* Note how the "properties" of courses differ

code code course @ course code

name
Programmer:@
system
name » teacher students

instance

instance Jonas 160 O
Duregérd
students /

V4
teacher teacher (140 D /
students 4

T30S /" | Could be a (directed) graph if

" these where connected/merged

-

Graph databases

 All our data is stored in nodes and edges
 Somewhat similar to the entity-relationship model
* Example (from the neo4j graph database):

:HAS_CEO

start_date: 2008-01-20 :LOCATED IN

Employee « Company

name: Amy Peters
date_of birth: 1984-03-01
employee_ID: 1

City

Schemas for SSD

* Inherently, semi-structured data does not have schemas
* The type of an object is its own business
 The schema is given by the data

* We can of course decide to restrict graphs in any way we like. Examples:
* Decide that all course nodes must have a code attribute
e Each course node should have either a teacher or at least two instances
* ... and each instance node must have a teacher

* Enforcing these restrictions automatically is a separate issue...

Examples of document-based SSD standards

XML
e Extensible Markup Language
e Created in the 1990's
 Syntax: <tag attribute="value"><other_tag/>also text</tag>

e JSON
e JavaScript Object Notation
* Created in the 2000's
* Collections of key/value pairs, very simple syntax
e Used to various extents in lots of modern DBMS

* Both these are document based, a data set is most naturally described
by a text document rather than a table

* Both are hierarchical, the documents have a tree-structure

Data interchange formats

* Data interchange formats facilitate the transfer of data from one database
to another

* Transforms data from one schema to another, via an intermediate format

* The interchange format must be flexible enough to conveniently
represent data from both schemas

Database XML Document Database

server server

Cross domain communication

 When modern web services build web pages, it is not uncommon that
they request information from other web servers

* Direct access to database servers over the Internet is not advisable

——————
——————————
- pal

,,(

HTTP request
HTTP U <
server JSON/XML data
A
HTTP HTTP
request response
 /

rWeb client ﬂ

Queries >
HTTP U ‘:
server /

ek Results ’

~ -
~~~~~~~
———————————

local network



XML

* Derived from pre-existing document markup languages

 Compare with HTML: HTML uses tags to format a web-page, XML
uses tags to describe data

 Documents are built from elements, attributes and text

One way to express this tree in XML:
<instance name="Period 2">
<teacher>Jonas</teacher>
<students>230</students>

</instance>
teacher / \ : \
Closing tags

T

instance

Period 2

Contains 3 elements (instance, teacher, and students),
1 attribute (name), and 2 element texts (Jonas, 230)




Hierarchical structure of xml

XML documents always have a single root element, that in turn may contain
other elements with attributes/elements of their own etc.
* All tags must be closed

* Allowed:
<grades><grade>G</grade><grade>VG</grade></grades>

* Not allowed: <grades><grade>G<grade>VG</grades>
* Special case, self closing tag: <tag/>or<tag att="val"/>

e Tags must be properly nested
e Allowed: <a><b><c>text</c></b></a>
* Not allowed: <a><b><c>text</b></c></a>

Uses </b> to close <c>



Mixing texts and elements

* It is valid to have text and subelements in the same element:
<tag>text<subtag></subtag></tag>
 This is considered bad practice, especially when you have things like
<tag>text<subtag></subtag>more text</tag>
* What is the semantic difference between the text before/after the subtag?
* In the hierarchical structure the two texts are on the same level



Attributes vs elements

* Two ways of representing a person in XML:

<Teacher> Element-centric
<Firstname>Jonas</Firstname>

<Lastname>Duregard</Lastname>
<Course>Databases</Course>

Attribute-centric
</Teacher>

<Teacher firstname="Jonas" lastname="Duregard" course="Databases"/>

* Attributes and elements can be mixed however we want. What should we use?
* Having firstname as an attribute and lastname as en element seems odd

* Maybe firstname/lastname should be attributes, and courses elements (the
names feel "attributy" whereas a course feels more "entityish")



Attributes vs elements

e Suppose we want Jonas to have two courses, and each course to have both a
name and a code?

* Elements are easy to extend, attributes are very limited

<Teacher>
<Firstname>Jonas</Firstname>
<Teacher> <Lastname>Duregard</Lastname>
<Firstname>Jonas</Firstname> <Course>
<Lastname>Duregard</Lastname> <Name>Databases</Name>
<Course>Databases</Course> <Code>TDA357</Code>
</Teacher> </Course>
<Course>
<Name>Programmerade system</Name>
<Code>TDAl43</Code>
Extra name elementto avoid </Course>

mixing text and elements </Teacher>



Summary: Attributes vs elements

* Advantages of attributes:
* Compact syntax
e Correspond naturally to attributes in relational databases

* Advantages of elements:
* Can represent complex objects (with attributes, subelements etc.)
e Can have arbitrarily many elements with the same tag
* Easily extensible (remember: we are using XML for flexibility!)

 Compare with ER-modelling: Anything that needs to have attributes
of its own can never be an attribute

e Often, elements are used to represent the actual data, while
attributes are used to describe "modifiers" of tags



s an XML document a database?

* Yes, in a wide sense
* [t contains data in a structured, (sort of) persistant manner

* It is very unlike a relational database:
* There is no "XML-server" corresponding to PostgreSQL
* There is no insert operation that adds data into a document
 Documents are either generated by a program or written by hand
* We typically do not write queries on our documents (but we can)
 Documents are processed by programs, using library functions etc.
* We do not have constraints on documents (but they can be validated)



Validation of XML documents

e Step 1: Check well-formedness
* Not every text documnet is an XML document, before processing it in any
way it needs to be parsed, and that validates that it is well-formed
(every tag is closed, tags are correctly nested etc.)
 Step 2: Validating the data against a schema
 The schema is provided separately from the data, in a special schema format
* For XML, there are two popular standards: DTD and XML Schema
* Validation is different from constraints, they are not checked when we add data
(since documents are generated, not constructed by insertions)

e Validation is typically used when you receive a document from a third party
(user input or data received from a remote server etc.)



XML Schema and JSON Schema

* Basic idea: Instead of using a separate language to describe schemas, we use
XML to describe XML schemas and JSON to describe JSON schemas

* The schema is a document that describes the structure of other documents!
e Tomorrow we will have a much closer look at JSON schemas

An XML document describing other documents

(saying all teacher elements have first- and lastname attributes)

<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="Teacher">
<complexType>
<attribute name="FirstName" use="required" type="string">
<attribute name="LastName" use="required" type="string">
</complexType>
</element>
</schema>



JSON

* Think of JSON documents as Java(Script) objects without any methods
e Objects that can have variables (that are objects or primitive types)
* The "variable names" are called keys in JSON

* This document contains an object that has a single variable, "Teacher"
* The value of "Teacher" is an object containing three variables of type String

"Teacher"
"Firstname": "Jonas" This is actual
Start/end "Lastname": "Jonas" _ |
object "Course": "Databases" Javascript code!

A

key: value




XML or JSON

* Here is a tiny XML document, and a tiny JSON document
* Notice how they are doing pretty much the same thing?

{

<Teacher> "Teacher": {
<F1 > < ] > - .
Firstname Jonaf /Firstname "Firstname": "Jonas",
<Lastname>Duregard</Lastname> "I,.astname" : "Jonas",
<Course>Databases</Course> "Course": "Databases"

</Teacher>

[ o

Four elements and three strings

Two objects and three strings




XML or JSON

* Both XML and JSON can be used as semi-structured data formats
* E.g. to receive data from a web server, for data exchange etc.

e Both are used in practice and there are good arguments for using either
* Traditionally this course teaches only XML

* From this year we are switching focus towards JSON
* It has simpler syntax
* It is growing quickly into the standard data format of the web



So what will | need to know for the exam?

e Read and understand XML documents

* Read, write, validate and query JSON documents
(tomorrows lecture, and the exercise on Friday)

* For this years exam, any questions about JSON can also be answered
using XML instead (but that requires learning about DTDs, XML
Schema and XPath, which | do not cover in these lectures)

* Most old questions about XML can be translated into
corresponding JSON questions (replacing DTD with JSONSchema
and XPath with JSONPath)



