
TDA357/DIT621 – Databases
Lecture 11 – Efficiency, Semi-structured Data Model, NoSQL and XML

Jonas Duregård

Efficiency of databases

In this course we do not talk a lot about efficiency, primarily for two reasons:

1. Predicting database performance is difficult due to automatic optimizations

• Writing a more complicated query for efficiency may make no difference

• Worse: It may degrade performance because the DBMS fails to optimize it

2. Premature optimization is a problem

• A lot of people worry about performance when they should be worrying
about correctness and ease of use (and productivity)

• A good approach to efficiency in most cases: Write a simple and elegant
solution. If it is too slow, write a messy but hopefully efficient solution

• Use the simple solution as a reference to test the messy one

A famous quote (my emphasis)

"Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs, and these

attempts at efficiency actually have a strong negative impact when

debugging and maintenance are considered. We should forget about small

efficiencies, say about 97% of the time: premature optimization is the root

of all evil. Yet we should not pass up our opportunities in that critical 3%."

- Donald Knuth (1974)

About complexity of database operations

• Analyzing database operations using asymptotic complexity (O-notation) can
be misleading

• The reason is that most work of a typical persistant database is spent on:

• Disk access (reading/writing data from disk)

• Network communication (receiving queries and sending results)

• The former means that rather than the number of rows, we should discuss
how many different disk locations we fetch rows from

• The latter means writing fewer queries is better

General techniques for efficient databases

• Today I will show you two techniques that can be used to make
databases more efficient:

• Indexes

• Materialized views

• Neither of them are "silver bullets"

• All obvious optimizations are done automatically by the DBMS

• Both techniques can inadvertantly degrade performance

• Require careful consideration

Indexes

• I have a large printed collection of karaoke tracks, organized by producing label

• Users typically want to look up tracks by artist or title

• Problem: Searching through the whole collection linearly is time consuming

• Solution: Print two indexes, one where all tracks are ordered by artist and one
where they are ordered by title

• Users can binary search (most of them without knowing it)

• Whenever we add new tracks to the collection, we also need to update
both the indexes

Indexes in SQL

• An index is separate from, but connected to a table

• It is created on a set of columns on that table

• It allows us to quickly find all rows with given values for those columns

• An index on (artist,album) would allow us to quickly find all karaoke
tracks with a certain artist and album name

• How lookups work is DBMS-specific, but hash-tables are typically used

• Created automatically for primary keys and UNIQUE-constraints

• Automatically used when selecting/updating/deleting using WHERE-clauses

• Updated automatically when a row is deleted/updated/inserted

• May make inserts a lot slower

• Uses disk space, often more than the table itself

Why not create all indexes automatically?

• For a table with 10 columns, there are 210-1=1023 possible indexes

• Updating a thousand indexes with each insert/update/delete would
be extremely detrimental to performance

• Disk space usage could suddenly become an issue if you use about
1000 times more space

• Megabytes become gigabytes, gigabytes become terrabytes...

When should indexes be used?

• These conditions give a hint that using indexes may be a good idea:

• You have many rows (if you have a few hundred rows, the extra disk
access for reading the index is more time consuming than a linear lookup)

• Why are you even worrying about performance for hundreds of rows?!

• You are frequently doing lookups/joins etc. on a non-key

• You are not worried about inserts being slower or disk space issues

Creating indexes

• Most DBMS support the statement:
CREATE INDEX index_name ON table(attributes);

• Not part of the SQL standard

• Can be done on existing tables with data (may take some time to create)

• Existing SQL queries do not need to be changed in any way ☺

Materialized views

• The views you have been writing are virtual

• They are just a name for a query

• Using a view in a query FROM-clause is the same as using a subquery

• Obvious opportunity for performance gain:
Caching the result of the view could save a lot of time

• Obvious new performance problem:
When the table data is changed, the query result needs to be updated

Materialized views in SQL

• Replace CREATE VIEW by CREATE MATERIALIZED VIEW

• Instead of just writing a query, you create a special kind of table that
is automatically updated to reflect the result of the query

• May have to recompute the whole query when a table is updated

• If updates are more frequent than selections, the materialized
view will be less efficient than a virtual view

Materialized views in postgres

In postgres, things work a bit differently:

• Materialized views are NOT automatically updated

• They reflect only the data that is in the tables when it is created

• User needs to run REFRESH MATERIALIZED VIEW; to update it

• Can be done via a trigger on underlying tables to emulate the
standard behavior (not a FOR EACH ROW trigger though!)

When should materialized views be used?

• You have a very costly query in a view

• One of two situations:

• The underlying tables are rarely modified and view is often selected from

• You are OK with the view showing slightly outdated data (postgres specific)

• The latter could be implemented by scheduling a REFRESH to be done e.g.
once per hour/day/week

• Example: We have a view that shows the number of members in all
Facebook groups, but it doesn't have to be up to this minute

NoSQL databases

Stepping outside the box

• Data does not have to be in tables. How else can we do it?

• Graph databases

• Our data is a graph with nodes

• Key/value stores

• Store all data in a big map, lookup keys and get values

• Simple, efficient, but kind of limited

• Document databases

• Store documents, that in turn contain structures

We will focus on this

Semi-structured data (SSD)

• The relational model has a very rich structure

• Allows us to have strong constraints on data

• This structure also limits flexibility

• Much of the design work is centered on deliberately preventing users
from being flexible (by enforcing constraints)

• In semi-structured data models, the schema is flexible

• Data is still structured

… but the structure is not necessarily uniform across the data

• E.g. data does not fit in tables where every row has the same columns

A different way of structuring data
• Here as a tree of objects, with labels on edges and data in nodes

• Note how the "properties" of courses differ

Courses

db

TDA357

Databases

Jonas

Duregård

Aarne

Ranta

Period 2
Period 3

140

230

course

DIT621

codecode

name

instance
instance

students
teacher teacher

students

ps

course

DIT621

code

Programmerade

system

name

Jonas

Duregård
160

studentsteacher

Could be a (directed) graph if

these where connected/merged

root

Graph databases
• All our data is stored in nodes and edges

• Somewhat similar to the entity-relationship model

• Example (from the neo4j graph database):

Schemas for SSD

• Inherently, semi-structured data does not have schemas

• The type of an object is its own business

• The schema is given by the data

• We can of course decide to restrict graphs in any way we like. Examples:

• Decide that all course nodes must have a code attribute

• Each course node should have either a teacher or at least two instances

• ... and each instance node must have a teacher

• Enforcing these restrictions automatically is a separate issue...

Examples of document-based SSD standards
• XML

• Extensible Markup Language

• Created in the 1990's

• Syntax: <tag attribute="value"><other_tag/>also text</tag>

• JSON

• JavaScript Object Notation

• Created in the 2000's

• Collections of key/value pairs, very simple syntax

• Used to various extents in lots of modern DBMS

• Both these are document based, a data set is most naturally described
by a text document rather than a table

• Both are hierarchical, the documents have a tree-structure

Data interchange formats

• Data interchange formats facilitate the transfer of data from one database
to another

• Transforms data from one schema to another, via an intermediate format

• The interchange format must be flexible enough to conveniently
represent data from both schemas

Database

server

Database

server
XML Document

Cross domain communication

• When modern web services build web pages, it is not uncommon that
they request information from other web servers

• Direct access to database servers over the Internet is not advisable

Database

server
HTTP

server

Queries

Results

local network
HTTP

request

HTTP

response

Web client

HTTP

server

HTTP request

JSON/XML data

XML

• Derived from pre-existing document markup languages

• Compare with HTML: HTML uses tags to format a web-page, XML
uses tags to describe data

• Documents are built from elements, attributes and text

Jonas

Period 2

230

instance

students teacher

<instance name="Period 2">

<teacher>Jonas</teacher>

<students>230</students>

</instance>

One way to express this tree in XML:

Closing tags

Contains 3 elements (instance, teacher, and students),

1 attribute (name), and 2 element texts (Jonas, 230)

Hierarchical structure of xml

• XML documents always have a single root element, that in turn may contain
other elements with attributes/elements of their own etc.

• All tags must be closed

• Allowed:
<grades><grade>G</grade><grade>VG</grade></grades>

• Not allowed: <grades><grade>G<grade>VG</grades>

• Special case, self closing tag: <tag/> or <tag att="val"/>

• Tags must be properly nested

• Allowed: <a><c>text</c>

• Not allowed: <a><c>text</c>

Uses to close <c>

Mixing texts and elements

• It is valid to have text and subelements in the same element:

<tag>text<subtag></subtag></tag>

• This is considered bad practice, especially when you have things like
<tag>text<subtag></subtag>more text</tag>

• What is the semantic difference between the text before/after the subtag?

• In the hierarchical structure the two texts are on the same level

Attributes vs elements
• Two ways of representing a person in XML:

• Attributes and elements can be mixed however we want. What should we use?

• Having firstname as an attribute and lastname as en element seems odd

• Maybe firstname/lastname should be attributes, and courses elements (the
names feel "attributy" whereas a course feels more "entityish")

<Teacher>

<Firstname>Jonas</Firstname>

<Lastname>Duregård</Lastname>

<Course>Databases</Course>

</Teacher>

<Teacher firstname="Jonas" lastname="Duregård" course="Databases"/>

Element-centric

Attribute-centric

Attributes vs elements
• Suppose we want Jonas to have two courses, and each course to have both a

name and a code?

• Elements are easy to extend, attributes are very limited

<Teacher>

<Firstname>Jonas</Firstname>

<Lastname>Duregård</Lastname>

<Course>

<Name>Databases</Name>

<Code>TDA357</Code>

</Course>

<Course>

<Name>Programmerade system</Name>

<Code>TDA143</Code>

</Course>

</Teacher>

<Teacher>

<Firstname>Jonas</Firstname>

<Lastname>Duregård</Lastname>

<Course>Databases</Course>

</Teacher>

Extra name elementto avoid

mixing text and elements

Summary: Attributes vs elements

• Advantages of attributes:

• Compact syntax

• Correspond naturally to attributes in relational databases

• Advantages of elements:

• Can represent complex objects (with attributes, subelements etc.)

• Can have arbitrarily many elements with the same tag

• Easily extensible (remember: we are using XML for flexibility!)

• Compare with ER-modelling: Anything that needs to have attributes
of its own can never be an attribute

• Often, elements are used to represent the actual data, while
attributes are used to describe "modifiers" of tags

Is an XML document a database?

• Yes, in a wide sense

• It contains data in a structured, (sort of) persistant manner

• It is very unlike a relational database:

• There is no "XML-server" corresponding to PostgreSQL

• There is no insert operation that adds data into a document

• Documents are either generated by a program or written by hand

• We typically do not write queries on our documents (but we can)

• Documents are processed by programs, using library functions etc.

• We do not have constraints on documents (but they can be validated)

Validation of XML documents

• Step 1: Check well-formedness

• Not every text documnet is an XML document, before processing it in any
way it needs to be parsed, and that validates that it is well-formed
(every tag is closed, tags are correctly nested etc.)

• Step 2: Validating the data against a schema

• The schema is provided separately from the data, in a special schema format

• For XML, there are two popular standards: DTD and XML Schema

• Validation is different from constraints, they are not checked when we add data
(since documents are generated, not constructed by insertions)

• Validation is typically used when you receive a document from a third party
(user input or data received from a remote server etc.)

XML Schema and JSON Schema

• Basic idea: Instead of using a separate language to describe schemas, we use
XML to describe XML schemas and JSON to describe JSON schemas

• The schema is a document that describes the structure of other documents!

• Tomorrow we will have a much closer look at JSON schemas

<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="Teacher">

<complexType>

<attribute name="FirstName" use="required" type="string">

<attribute name="LastName" use="required" type="string">

</complexType>

</element>

</schema>

An XML document describing other documents

(saying all teacher elements have first- and lastname attributes)

JSON

{

"Teacher": {

"Firstname": "Jonas",

"Lastname": "Jonas",

"Course": "Databases"

}

}

• Think of JSON documents as Java(Script) objects without any methods

• Objects that can have variables (that are objects or primitive types)

• The "variable names" are called keys in JSON

• This document contains an object that has a single variable, "Teacher"

• The value of "Teacher" is an object containing three variables of type String

key: value

Start/end

object

This is actual

JavaScript code!

XML or JSON

• Here is a tiny XML document, and a tiny JSON document

• Notice how they are doing pretty much the same thing?

<Teacher>

<Firstname>Jonas</Firstname>

<Lastname>Duregård</Lastname>

<Course>Databases</Course>

</Teacher>

{

"Teacher": {

"Firstname": "Jonas",

"Lastname": "Jonas",

"Course": "Databases"

}

}

Four elements and three strings
Two objects and three strings

XML or JSON

• Both XML and JSON can be used as semi-structured data formats

• E.g. to receive data from a web server, for data exchange etc.

• Both are used in practice and there are good arguments for using either

• Traditionally this course teaches only XML

• From this year we are switching focus towards JSON

• It has simpler syntax

• It is growing quickly into the standard data format of the web

So what will I need to know for the exam?

• Read and understand XML documents

• Read, write, validate and query JSON documents
(tomorrows lecture, and the exercise on Friday)

• For this years exam, any questions about JSON can also be answered
using XML instead (but that requires learning about DTDs, XML
Schema and XPath, which I do not cover in these lectures)

• Most old questions about XML can be translated into
corresponding JSON questions (replacing DTD with JSONSchema
and XPath with JSONPath)

