
TDA357/DIT620 – Databases
Lecture 4 & 5 – Design using ER

Jonas Duregård

Recall: Relational schemas
• A database schema is a collection of relation schemas like this one:

Grades(student, course, grade)

student -> Students.idNumber

course -> Courses.code

grade ∈∈∈∈ {0,3,4,5}

• Relation schemas can be translated into SQL tables
CREATE TABLE Grades (

student TEXT,

course CHAR(6),

grade INT NOT NULL,

PRIMARY KEY (student, course),

FOREIGN KEY (student) REFERENCES Students(idNumber),

FOREIGN KEY (course) REFERENCES Courses(code),

CHECK (grade IN (0,3,4,5))

);

Spotting bad schemas

• Here is a database for keeping track of room bookings. Why is it bad?

• Redundancy

• Mentions 3 times that GD has 236 seats and twice that TDA357 is Databases

• Risk of:

• Update anomaly: I change one of the seat values but not the other two

• Deletion anomaly: Remove all bookings in GD and loose knowledge of its size

Table: Bookings

courseCode name day timeslot room seats

TDA357 Databases Tuesday 0 GD 236

TDA357 Databases Tuesday 1 GD 236

ERE033 Reglerteknik Tuesday 0 HB4 224

ERE033 Reglerteknik Friday 0 GD 236

Decomposing the table
Table: Bookings

courseCode name day timeslot room seats

TDA357 Databases Tuesday 0 GD 236

TDA357 Databases Tuesday 1 GD 236

ERE033 Reglerteknik Tuesday 0 HB4 224

ERE033 Reglerteknik Friday 0 GD 236

Table: Courses

courseCode name

TDA357 Databases

ERE033 Reglerteknik

Table: Bookings

courseCode day timeslot room

TDA357 Tuesday 0 GD

TDA357 Tuesday 1 GD

ERE033 Tuesday 0 HB4

ERE033 Friday 0 GD

Table: Rooms

room seats

GD 236

HB4 224

Fairly simple process for this tiny example

Not so much for large databases with hundreds of columns

How do we design database schemas?

Domain descriptions
• The domain of a database is an informal description of everything a database

should contain

• Typically given by a client (an expert in the domain, but not in databases)

• Natural language, no reliable automatic way to translate to SQL code

• Sometimes ambiguous on important details

• Sometimes hard to understand if you are not a domain expert

• In real life, there is continuous communication between the client who wants
the database and the developers of the database

• In this course, you get domain descriptions that are more precise (and
much shorter) than typical domain descriptions

Modelling domains

• The database we create is based on a model of the domain

• A model contains formal, well defined definitons

• Look at a sentence from the domain like "Rooms can be booked for
courses at particular timeslots.", when designing the database we
have to decide how to model that sentence in the database

The problem of design
• Going from an informal domain description directly to SQL or even to

a schema is difficult and error prone

• It's also hard to use the tables directly to describe the database to
other developers

• We want an intermediate high level design that is easy for humans to
understand, and still easy to translate into tables

Domain

description

(informal text)

High level

design

Relational

schema

Relational

DBMS

(SQL code)

This is our focus this week

The Entity-Relationship model

• The ER model is a high level design model that expresses every aspect of the
database as entities (entity sets to be more precise) and relationships (not the
same as relations!)

• A third category that is easy to forget (not in the name) are attributes

• Entities are things from the domain: courses, employees, car models, cars …

• Relationships are things that connect entities, like "a car is of a car model", or
"an employee has another employee as its boss", "courses have students" …

• Attributes are simple properties of entities: names of courses, salaries of
employees, …

Entities
• What is an entity?

• Entities are objects with attributes (e.g. courses with name, credits..)

• Rule of thumb: Entities can exist independently from other entities, for
instance courses and teachers, or players and teams etc.

• Car models are entites (can exist even if there are no cars of that model)

• Objects that are inherently dependant on other entities are not entities

• Course names are not entities (what is a course name without a course?)

• Course result can not exist withouth courses, so results are not entities (but
also not attributes like course names!)

• This distinction is not clear-cut and there are some tricky cases

• As a guideline: most basic objects you want in your database tend to be entities

Entities, attributes and deletion anomalies

• One way to express the problem with the deletion anomaly we saw before:

• We treated rooms as attributes of bookings, when they should be entities

• Rooms are logically separate entities that can exist independtly of
bookings, same thing goes for courses

Table: Bookings

courseCode name day timeslot room seats

TDA357 Databases Tuesday 0 GD 236

TDA357 Databases Tuesday 1 GD 236

ERE033 Reglerteknik Tuesday 0 HB4 224

ERE033 Reglerteknik Friday 0 GD 236

Attributes

• Attributes are "simple" properties of entities

• Can be numbers, text strings, etc.

• Something that every instance of that entity has, like a each course
having a name or each car having a licence number

• What are NOT attributes

• Collections of values (like a list of students)

• Optional values (if cars sometimes have an owner, owner is not an
attribute of the car entity)

• Things that refer to attributes of other entities (see relationships)

Coursename

credits

Drawing ER-diagrams

• ER-diagrams are visual representations of ER-models

• ER-diagrams are popular because they are:

• Graphical, human-friendly

• Mechanically translatable into SQL (thus machine-friendly)

• Quite expressive (a lot of design concepts can be expressed using ER)

• Our first ER-diagram, an entity (Course) with two attributes (name, credits):

Entities are boxes

Attributes The primary key is underlined

(here courses are identified by name)

Translating to a relational schema

• Entities become relations (become tables in SQL)

• Attributes become attributes (become columns in SQL)

• Primary keys are translated in the obvious way

Courses(name, credits)

CREATE TABLE Courses(

name TEXT,

credits INT NOT NULL,

PRIMARY KEY (name)

);

Mechanical translation into schema Semi-mechanical translation to SQL

Coursename

credits

"Each course has its own name, and a number of credits."

Domain

description

(informal text)

High level

design (ER)

Relational

schema

Relational

DBMS

(SQL code)

Coursename

credits

Courses(name, credits)

CREATE TABLE Courses(

name TEXT,

credits INT NOT NULL,

PRIMARY KEY (name)

);

Naming in ER vs relational schemas

• Entities are by convention named in singular (Course)

• Relations are named in plural (Courses)

• We also follow the convention we are using for relations/tables,
meaning capitalized entity names and common attribute names

Courses(name, credits)

Coursename

credits

Multiple entities

• Separate entities are (for now) translated independently

Course

name

credits Program

name

Courses(name, credits)

Programs(name)

The rest of this and tomorrows lecture

• I will present lots of features of ER-diagrams

• For each feature I will state something from a domain description (an
informal description of the database) and …

• … show how to model it in ER-diagrams

• … show how it is translated into a relational schema

• … say something about how to identify the feature in domains

• If there is time left, I will spend it demonstrating some more examples
common mistakes

A simple relationship

• I want to extend my database so every program has a set of courses

• First question: How would I modify my schema?

• Do I add an attribute "listOfCourses" to Programs?

• No! Lists are not attributes. And if they where, how do we state they
need to be names of courses?

• Do I add an attribute "listOfPrograms" to Courses?

• No! Same reasons!

• Solution: Add a new relation ☺

• Essentially a list of (course,program)-pairs

• In ER, we express CourseIn as a relationship

Courses(name, credits)

Programs(name)

CourseIn(course,program)

course -> Course.name

program -> Program.name

Courses(name, credits)

Programs(name)

Relationships in ER-diagrams

• Relationships are drawn using a diamond-shapes

• Names typically describe the relationship (OwnedBy, RegisteredTo, …), or
sometimes just adding the related entities names (like ProgramCourse)

• Should relay the intent of the relationship, and work as a table name

Course

name

credits Program

name

CourseIn

Constraints from relationships
• The references ensure only existing courses and programs can be in CourseIn

• The primary key of CourseIn is the PKs of both referenced relations:

• A course can be in several programs (same course, different program)

• A program can have multiple courses (same program, different course)

• A program can not have the same course multiple times (both equal)

Course

name

credits Program

name

CourseIn

Courses(name, credits)

Programs(name)

CourseIn(course,program)

course -> Course.name

program -> Programs.name

Note that the credits attribute is not here, only the key

Compound keys and relationships

• Remember: Always include the whole key of both the related relations!

Meetings(time, place)

Persons(idnr, name)

Attends(person,time,place)

person -> Persons.idnr

(time,place) -> Meetings.(time,place)

Meeting PersonAttends name

idnr

time

place

Compound keys (2 or more attributes)

Compound reference

Attributes on relationships
• What if we wanted to add an attribute stating which year in a

program a certain course is?

• The year is not an attribute of course (because different programs
may have the course in different years)

• The year is not an attribute of program (because different courses
may be in different years of the program)

• The year is an attribute of the relationship between them!

Course

name

credits Program

name

CourseIn

year

Translating relationships with attributes
• Just add the extra attributes to the created relation

• Note that relationships can never have key attributes!

• Always identified by the related entities

Course

name

credits Program

name

CourseIn

year

Courses(name, credits)

Programs(name)

CourseIn(course, program, year)

course -> Courses.name

program -> Programs.name

When I add a

(course,program)-pair

to CourseIn, I also

have to specify a year

Identify attributes on relationships in domains

• Things like "X may have a z in/for/at a Y" where X and Y are entities
and z is an attribute typically signify that z is an attribute of a relation

• Example: "Teachers can be assigned roles in courses"
(role is an attribute of a relationship between teachers and courses,
unless roles should be entity…)

Multiplicity

• The relationships we have seen so far are called many-to-many

• E.g. A course can belong to many programs and programs have many courses

• What if I wanted to model something like "Each course has a single teacher" or
"Some of the teachers have an office"?

• These examples describe relationships, but they are not many-to-many

Many-to-exactly-one

• The Teaches relationship models "each course has a single teacher"

• If the arrow was in the other direction it would model "each teacher
has a single course"

• An exception to the guideline that entities can exist independently
(since courses can not exist without teachers)

Coursename

credits

Teacher

tname

Teaches

Curved arrow indicates "exactly one"No arrow indicates "many"

Translating many-to-exactly-one
• If you had a table of courses, where each row is a separate course. How

would you express that each course has a teacher?

• By adding a column for teacher of course!

Coursename

credits

Teacher

tname

Teaches

Teachers(tname)

Courses(name, credits, teacher)

teacher -> Teachers.tname

Not every relationship

becomes a relation/table!

Identify many-to-exactly-one in domains

• Anything like "Every X has a Y" (where Y is another entity) are typically
many-to-exactly-ones

• It's common that the language is ambiguous, e.g. "Xs have Ys" can
mean that each X can have multiple ys, or that they each have one.

• If you want to add an attribute, but that attribute is more accurately
modelled as an entity, you should use many-to-one relationships

Many-to-at-most-one

• This diagram expresses "Some teachers have an office", or "A teacher
may have an office" or equivalent

• Also called many-to-one-or-zero

Teacher

name

Office

number

TeacherOffice

Pointy arrow means "at most one" (= one or zero)

Translating many-to-at-most-one: ER-approach

• How can we modify the translation of a many-to-many relationship to
make it many-to-at-most-one?

Teacher

name

Office

number

TeacherOffice

Teacher

name

Office

number

TeacherOffice

Teachers(name)

Offices(number)

TeacherOffice(teacher,office)

teacher -> Teachers.name

office -> Offices.number

Teachers(name)

Offices(number)

TeacherOffice(teacher,office)

teacher -> Teachers.name

office -> Offices.number

Change the key!

Translating many-to-at-most-one: Null-approach

• How can we modify a many-to-one to make it many-to-at-most-one?

Teacher

name

Office

number

TeacherOffice

Teacher

name

Office

number

TeacherOffice

Offices(number)

Teachers(name, office)

office -> Offices.number

Offices(number)

Teachers(name, office (or null))

office -> Offices.number

Allow the foreign key to be null

When can the Null approach be used?

The null approach can only be used under the following conditions:

• The "at-most-one"-side does not have a compound key

• The relationship does not have any attributes

• You are morally OK with having null values in your database

The ER-approach always works ☺

• Side-note: Is the Null-approach more efficient?

• Depends on usage, but often it's less efficient
(slightly simplified: SELECTs are slower and INSERTS are faster)

Identify many-to-at-most-one in domains

• Anything like "X may have a Y" or "Some Xs have a Y" (where Y is an
entity)

• Often text is ambiguous about many/exactly one (e.g. "courses have
teachers" could sometimes mean that many courses do, but not all)

A side-note on naming attributes

• In several of these examples I have had the same name for attributes of
different entities (e.g. name for both courses and programs)

• This is allowed, but there may be advantages to having globally unique
attribute names in diagrams (less confusion, fewer qualifed names later
on in SQL etc.)

Multiway relationships
• A relationship can connect to more than two entities, but this is fairly rare

Room

rname

Course

code cname

Lecture

Teacher

tname

Courses(code, cname)

Teachers(tname)

Rooms(rname)

Lectures(course,teacher,room)

course -> Courses.code

teacher -> Teachers.tname

room -> Rooms.rname

This may not be exactly what we

wanted (each lecture can have

multiple teachers and rooms?)

Note that I have chosen

globally unique names here

A better example of a multiway relationship

• "Teachers can be assigned any of a list of roles (e.g. examiner, course
responsible, assistant) for any course."

• Here, roles should be an entity (the concept of examiner exists even if
there are currently no courses)

• Ambiguity: Can a teacher have roles on multiple courses?

• Reasonable assumption: yes (from our knowledge of the domain)

• Ambiguity: Can a teacher have multiple roles in the same course? (does
"any of" mean "any one of" or "any subset of"?)

• Let's assume a teacher can only have one role (and there is a special
role for being both examiner and course responsible for instance)

Multiway relationship

Course

code

CourseRole

Role

Teacher

rname

tname

cname idnr

Courses(code, cname)

Teachers(idnr,tname)

Roles(rname)

CourseRole(course,teacher,role)

course -> Courses.code

teacher -> Teachers.idnr

role -> Roles.rname

Key ensures we can associate any

number of teachers with any number

of courses, and for each association

we have to select a valid role

Very similar to a role attributes on the relationship, but with a reference

Weird cases: What are we saying here?

• Probably "Some courses have a teacher with a role (from a list of roles)?"

• Switching the arrows expresses the same thing?

Course

code

CourseRole

Role

Teacher

rname

tname

cname idnr

Courses(code, cname)

Teachers(idnr,tname)

Roles(rname)

CourseRole(course,teacher,role)

course -> Courses.code

teacher -> Teachers.idnr

role -> Roles.rname

Key ensures: At most one (role,teacher)-pair per course

Then what does this mean?
• Same as the one on the last slide?

• If we enterpret the course-teacher connection as the main one it may
mean "courses may have a teacher and if they do they may have a role",

… but then it would look exactly the same as "courses may have a role
and if they do that role may have a teacher", which is different…

Course

code

CourseRole

Role

Teacher

rname

tname

cname idnr

Conclusion

• Multiway relationships that are many-to-many-to-many and
many-to-many-to-one seem to make sense, other combinations are more
difficult to interprate

• There are even weirder examples like all connections having pointed arrow

• Some that are obviously the same as having two separate relationships, like
many-to-exactly-one-to-exactly-one

Identifying multiway relationships in domains

• Something like "Xs have Ys in Zs" where X, Y and Z are all entities

• Ambiguity: "Xs have Ys and Zs" usually mean two separate
relationships (X-Y and X-Z) but sometimes a multiway relationship

• "Teachers have roles in courses" (assuming role is an entity not an
attribute), "A person must have a contract for each project they are
involved in" (assuming persons, contracts and projects are entities)

• Identifying multiplicity of the various connects is often difficult

Start of lecture 5 – The story so far

Domain description ER-diagram schema SQL code

attribute

 N to 1

Entity

N to 0/1

 N to N

Relationships

(many-to-many,

many-to-one,

many-to-at-most-one)

TranslationModelling

ER-diagrams:

New problem!

• Model: "Most employees have another employee as boss."

• Being boss of someone is a relationship

• So this is a relationship between employees and employees

Employee

idnr ename

BossOf

Arrow indicates at most one boss

per employee

Translating self relationships
… is done exactly like other relationships!

• Here using the null-approach (add the key from the at-most-one side
as an extra attribute on the many side, and make it nullable):

Employee

idnr ename

BossOf

Self reference!
DROP TABLE Employees;

CREATE Table Employees(

idnr INT PRIMARY KEY,

ename TEXT NOT NULL,

boss INT REFERENCES Employees

);

Employees(idnr,ename, boss (or null))

boss -> Employees.idnr

Nullable

A naming problem

• Suppose we want to model "Users can block other users"

• How do we translate this?

User

uname

Blocked

No arrows,

many users

can block

many users

Users(uname)

Blocked(uname1,uname2)

uname1 -> Users.uname

uname2 -> Users.uname

Problem: Who is blocking who here?

Solution: Annotate connections with names

User

uname

Blocked

Users(uname)

Blocked(blocking,blocked)

blocking -> Users.uname

blocked -> Users.uname

blocking blocked

Remember: The keys of both sides

become the key for many-to-many

Limitations of self-relationships

• Some things that can not be expressed in ER-diagrams:

• Can a value be related to itself? (I'm my own boss? I block myself?)

• Can a there be cycles (I'm the boss of my bosses boss? I'm blocked by a
person I block?)

• Is the relationship symmetric, e.g. for a Sibling-relationship:
If a is a sibling of b, then b must also be a sibling of a

• These can be expressed in side-notes/comments, but may be difficult to
implement in schemas/SQL

Identifying self relationships in domain

• Anything on the form "X has … to [an]other X"

• If you want to model any kind of tree-structure (many-to-at-most-one) or
graph structures (many-to-many) on values of an entity

Weak entities
• Model this: "Each company has divisions, and each division has a name.

Two divisions in the same company can not have the same name."

• Problem: What is the primary key of Divisions?

Division CompanyOf

cnamedname

Division CompanyOf

cnamedname

company

Companies(cname)

Divisions(dname,company)

company -> Companies.cname

Companies(cname)

Divisions(dname,company, company2)

company2 -> Companies.cname

Too strong key

???

Missing reference for company

Weak entities
• To deal with this situation, we add a feature called Weak entities

• A weak entity can not be identified only by its own attributes

• It requires support from at least one other entity

• The diagram below expresses that a division is identified by its name
along with the identity of the company it belongs to:

Division CompanyOf

cnamedname

Identifying relationship (always many-to-one)Weak entity

Dashed underlining

(partial primary key)

Translating Weak entities

• Compare to a regular many-to-one:

Division CompanyOf

cnamedname

Division CompanyOf

cnamedname

Companies(cname)

Divisions(dname,company)

company -> Companies.cname

Companies(cname)

Divisions(dname,company)

company -> Companies.cname

The key is the only difference!

Identify weak entities in domain descriptions

• Things like "Player numbers are unique within teams" or "players can
have the same number assuming they are on different teams"

• If you notice that the attributes you have determined for an entity are
not sufficient to identify members, perhaps it should be a weak entity

Inheritance and subentities

• Next up: What if I have something like "Some companies are
corporations. Each corporations has a year of incorporation."

• Adding a year attribute to Company does not work, that implies all
companies have a year of incorporation, and it's impossible to tell
which companies are corporations.

Company

name

corpyear

Why is this bad?

• In this design some companies have corporation years.

• Problem: Look at the CorpYear entity in isolation. What does it
contain? All years? All years where at least one corporation has been
formed (and no other years can be added)?

Company name

yearCorpYear

incorp

Many-to-at-

most-one

Incoporation years can not exist

independently, and should not

be modelled as entities!

Inheritance in ER: ISA-relationships (ISA = "is a")
• This ER diagram expresses "Corporations are a special kind of

companies, they have a year in addition to all properties of other
companies."

• We call Corporation a subentity, and Company its superentity

Company name

yearCorporation

ISA

address

No relationship name

(always labeled ISA)

Points at superentity

No key attributes

Translating ISA-relationships: ER-approach

• Make a new relation that only has the primary key of the superentity and the
extra attributes added by the subentity, and a reference to the superentity

Company name

yearCorporation

ISA

address

Companies(name, address)

Corporations(name, year)

name -> Companies.name

The reference means each

corporation also has an address

etc. - it really IS A company

Translating ISA-relationships: Null approach

• Just add the extra attribute to the superentity, but nullable

Company name

yearCorporation

ISA

address

Companies(name, address, year (or null))

null approach is (sometimes) bad m'kay

Course

code

PhdCourse

ISA

Course(code)

PhdCourse(code)

code -> Course.code

Course(code)

Sanity check: Is every design choice I made

in my diagram reflected in my schema?

"Some courses are PhD Courses"

Another null-problem

Company

name

year Corporation

ISA

address

Personidnr

BoardMember

Persons(idnr)

Companies(name, address)

Corporations(name, year)

name -> Companies.name

BoardMembers(person,corp)

person -> Person.idnr

corp -> Corporations.name

Persons(idnr)

Companies(name, address, year (or null))

BoardMembers(person,corp)

person -> Person.idnr

corp -> ???

NULL

Putting Companies.name here would be bad

(means all companies can have board members)

Reference to Corporations!

Problems with the NULL-approach

The NULL approach can only be used if:

• The subentity has a single attribute

• The subentity has no relationships to other entities

• Includes having its own subentitites

• Once again, the ER-approach always works...

Object Oriented translation of ISA

• A third type of translation is possible, where the subentity gets all the
attributes of the superentity, and every value is a member of just one of the
relations (in the ER-approach it is a member of the superentity or both)

• This translation is even more problematic than the Null-approach, so I will
not explain it in more detail

Multiple subentities
• In ER (unlike Object Oriented Programming), a value can be a member

of several subentities (if it also a member of the superentity)

• No easy way to limit membership to a single subentity

Student

idnr

PhdStudent

ISA

MasterStudent

ISA

name

Students(idnr,name)

PhdStudents(idnr)

idnr -> Students.idnr

MasterStudents(idnr)

idnr -> Students.idnr

Four possibilites for a student X:

X is only in Student

X is in Student and PhdStudent

X is in Student and MasterStudent

X is in all three (!)

Quiz
• Can employees be employed by corporations in this design?

• Answer: Yes!

Company name

yearCorporation

ISA
Employee

Employed

idnr

"Companies can have employees"

"Every corporation is a company"

Translation of example in last slide

Company name

yearCorporation

ISA
Employee

Employed

idnr

Employee(idnr)

Companies(name)

Corporations(name, year)

name -> Companies.name

Employed(employee, company)

employee -> Employees.idnr

company -> Companies.name

All corporation names

are also company names

Any company name

can be used here

ISA relationships and primary keys

• Subentities can never have any key attributes of their own!

• Defies the concept of inheritance, if entity X is not identified by the same
attributes as entity Y, we can never claim "X is a Y", it is something else

• If you need additional identifying attributes, use weak entities

• In a way, weak entities are "subentities with extra identifying attributes"

Identifying ISA-relationships in domains

• When it makes sense to say "X is a Y", like "Corporation is a Company" or
"Employee is a Person" or "Car is a Vehicle"

• In domain texts, it may also be stated as variations of "some X have y",
where y is an attribute and not another entity (optional attributes)

• Sometimes when you want to model a subset of some entity even if they
don't have extra attributes

Mission Accomplished!

You now know (or have at least heard of) all features of ER required for task 2!

Practicalities of making ER-diagrams
• We recommend using Dia to make diagrams (http://dia-installer.de/)

• Make sure you set it to ER-mode

• Pro-tip: Double-click an entity/relation to
set its properties (e.g. weak etc)

• Pro-tip: Double-click an attribute to set
primary key etc.

• Pro-tip: Double-click a line to change arrows, the curved arrow is
available under "more arrows"

• Pro-tip: There are no ISA-relationships in the ER, but you can use
merge/extract from flowchart (and just write ISA on them)

• Pro-tip: Always connect lines to the points of diamonds, not their center

ER-mode

Order of translation

• Always start with an entity whose translation does not depend on knowing the
keys of other entities

• Example: If two entities have a many-to-exactly-one relationship, always
start with the entity on the exactly-one side

• Example2: Translate superentities before you translate subentities

• Basically: Do translations in reverse order of how the arrows are pointing

• Do many-to-many relationships last

• If you find yourself writing a reference to a relation you have not yet
translated, you are doing things in the wrong order

A small domain example

"Make a database of companies in a corporate group. The companies
have employees, that are divided into divisions within each company.
Divisions in the same company cam not have the same names. Most
employees have a boss.

Some employees are given a managerial position with a special title.

Also make an inventory of the company cars, who has access to which
cars (only managers can have access to company cars) and for how
long they have had access."

An ER-diagram with almost everything

Division CompanyIn

cname

Of

dname

Employee

Manager

ISA

ssn

ename

CompanyCarCarAccess plates

sinceyear

BossOf

boss

model

title

salary

Companies(cname)

Divisions(dname,company)

company -> Companies.cname

Employees(ssn,division,company,ename,salary)

(division,company) -> Divisions(dname,company)

Managers(ssn,title)

ssn -> Employees.ssn

CompanyCars(plates,model)

CarAccess(ssn,car,sinceyear)

ssn -> Managers.ssn

car -> CompanyCars.plates

BossOf(employee, boss)

employee -> Employees.ssn

boss -> Employees.ssn

Entities (including many-to-exactly-one relationships)

Remaining relationships

Used ER-approach here

Assumptions made in this model

• Several assumptions were made that where not clearly stated in the
domain description:

• Each employee has a unique social security number (ssn)

• It's enough to know which year a car access was issued

• The model of each company car is known

• Titles for managers do not exist if no one has them (there is no
Title entity)

• Making different assumptions would give a different diagram/schema

• It's always good to keep track of the assumptions you make!

Things that are not in the model (but should be?)

• Cars belonging to specific companies or divisions

• Managers can only have access to cars from their own company?

• Bosses and their employees belong to the same company?

• An employee can not be the boss of themselves

• More general: No cycles in Boss-relation (two employees being eachothers
bosses etc)

• Some of these would be impossible to model in ER without loosing other
constraints we have, and some would be very difficult to implement in SQL

Clever ways to patch up the schema

• Make sure that bosses and their employees work in the same company.

• Difficult or impossible to express in the ER-Diagram �

• In SQL we have to add (sssn,company) UNIQUE to Employees for the
reference to work (you can only have references to values that are
explicityly stated to be unique)

BossOf(employee, boss)

employee -> Employees.ssn

boss -> Employees.ssn

BossOf(employee, boss, company)

(employee,company) -> Employees.(ssn,company)

(boss,company) -> Employees.(ssn,company)

References express:

"employee works at company"

and "boss works at company"

Some things that can not be expressed in ER

• Secondary keys/uniqueness constraints

• Can be identified using functional dependencies (next weeks topic)

• Value constraints (like "grade is one of 'U','3','4','5' ")

• Can be added as side-notes/comments

• "Relationships between relationships"

• Example: If we have one relationship for access to a company car, and one for
currently using it, we can not express that the latter is a subset of the former

• Can sometimes be implemented by cleverly modifying the schema (e.g.
adding/modifying references) after translation from ER

Can we extend ER to express more things?

• Yes, but some of the limitations are due to limitations in the unerlying
relational model, or in the end limitations in SQL

• Means we may get diagrams that can not be translated into
executable code

Common mistakes – check before you submit!
• Connecting entities directly without a relationship

• Connecting relationships directly to eachother

• Pointing the ISA the wrong way or pointing it at empty space

• Ignoring multiplicity and translating everything as many-to-many

• Sanity check: Is every choice you made in the diagram reflected in your
schema?

• Not using inheritance for optional attributes

• If an entity has an attribute, it means every instance of has a value

• "I just set the attribute to 1000 000 if there is no limit"

• Sanity check: If your diagram looks exactly as it would without a design
choice, that design choice does not exist

Common mistakes: Inheritance

• Overusing Inheritance, e.g. introducing a "WinningTeam" or "CompletedCourse"
entity when wins/grades are already stored in relationships

• Introuducing

• The inheritance should be an inherent property of the entity (ask yourself:
"can I look at a course and determine if it's a completed course or not?")

• "Branch ISA Program" or similar things that don't make sense to say out loud

Aa1

a2

B

b1

R b2

Common mistakes: Playing with arrows

• If you ever get the feeling you should have something like this:

… more likely A and B should be a single entity?

• It's hard to understand the exact intention here, are the values in A
and B in 1 to 1 correspondence? Or can several values in A map to the
same value in B?

