
Databases Exam Including solutions

(solutions after main text)
TDA357 (Chalmers), DIT621 (University of Gothenburg)

2019-06-10 14:00-18:00

Department of Computer Science and Engineering

Examiner: Jonas Duregård tel. 031 772 1028.

Results: Will be published within three weeks from exam date

Maximum points: 60

Grade limits Chalmers: 24 for 3, 36 for 4, 48 for 5.

Grade limits GU: 24 for G, 42 for VG.

Allowed material: One double sided A4 sheet with hand-written notes. If you bring a sheet, it

must be handed in with your answers to the exam questions, add “+1” in the box for number

of pages on the exam cover. Also, a standard reference is handed out along with this

document.

One English language dictionary is also allowed. You can answer in English or Swedish.

Begin the answer to each question (numbers 1 to 6) on a new page. The a,b,c,... parts with

the same number can be on the same page.

Write the question number on every page. Write clearly, unreadable answers give no points!

Fewer points are sometimes given for solutions that are clearly unnecessarily complicated.

Indicate clearly if you make any assumptions that are not given in the question. In

particular: in SQL questions, use standard SQL or PostgreSQL. If you use any other variant

(such as Oracle or MySQL), say this; but full points are not guaranteed since this may

change the nature of the question.

Question 1: ER-design (10 points, 5+5)

a) Your task is to make an ER-diagram for part of the database of a public transportation

system, similar (but not identical) to that of Gothenburg.

The database should contain stations, routes and vehicles. Each station has a name and a

location. Each route has a number (like line 10 or line 16). Vehicles include busses, trams

and boats (the database should store the type of each vehicle) and each vehicle is identified

by a serial number. Each vehicle can traffic a single route at any given time, and the

database should store which vehicles are currently trafficking which routes (intended to be

updated in real time as vehicles start/stop driving).

In addition to the basic information above, the system should store:

• All starting times for each route, and what station each start happens at (can be

different for different starts of the same route).

• Which stations each route makes a stop at, along with how many minutes it takes to

reach it from the start of the route (you may assume that each route can only stop at

any single station once).

• Some stations are ports (can accommodate boat traffic), the database should contain

the maximum draught (depth of the boats keel) of these ports.

You do NOT need to enforce that boats only visit ports.

Make reasonable assumptions about key attributes of entities based on the domain

description.

b) Translate this (symbolic) ER-diagram into a relational schema, including keys and

constraints. Hint: May be harder than it looks, think carefully about those keys!

(yes - I was too lazy to come up with another domain for this…)

Y

Z Ryz

z1

X

x1

x2
Rxyz

y1

y2

z2

Question 2: Functional Dependencies, Normal Forms (9 p, 3+3+4)

Here is a table intended to store grades and personal information of students at a school.

Each row contains the grade a student got on a course and how many academic credits the

course is worth.

student_id student_name course_id grade credits

1 Hermione TDA357 Outstanding 7.5

1 Hermione EDA452 Outstanding 7.5

2 Harry EDA452 Poor 7.5

3 Ron TDA666 Troll 10

4 Draco TDA357 Acceptable 7.5

4 Draco TDA666 Outstanding 10

a) Give concrete examples of an update anomaly and a deletion anomaly that could happen

here. For each example, give a short and clear description of what action is taken, and the

unintended consequence of that action.

b) Based on your understanding of the domain, identify at least 3 sensible functional

dependencies that should hold on the attributes of the table. If you make any non-obvious

assumptions on the domain when choosing your functional dependencies, please briefly

describe them.

c) Decompose the relation into BCNF based on the functional dependencies from b), your

answer should contain:

• The resulting relational schema (the steps to get it are not needed, adding references

is not needed)

• The number of rows each relation would contain to encode the same data as the

original table (you do not have to specify the exact contents, just the number of

rows).

Question 3: SQL Queries (9 p, 3+3+3)

Below is the schema for a database of users sending messages to each other. Readtime is

either a time when the message was read by the receiver, or null if it has not been read yet

(no other attributes can be null). Logintime is the last time the user was logged in.

Users(username, email, logintime)

Messages(sender, receiver, content, sendtime, readtime)

 sender -> Users.username

 receiver -> Users.username

a) Write an SQL query that finds sender username, sender email, and content of each unread

message sent to the user 'admin', with the oldest message first in the result.

b) Write an SQL query that calculates the average time between reading and sending

messages (for messages that have been read). Assume sendtime and readtime are timestamps

or similar, so the expression readtime-sendtime gives the time between sending and

reading (if the message has been read).

c) Write a query that finds for each user, which user they have sent the most messages to, or

null in cases of users that have not sent any messages. The result should have two columns,

one for the sender and one for the most common receiver. If there are ties, the same sender

may occur more than once with different receivers, or you may include any one of the most

common receivers.

Question 4: Relational Algebra (9, 3+3+3)

Consider this relational schema for part of the inventory for a clothes store.

Items(idnr, name, quantity, size_number)

Sizes(designation, min_number, max_number)

 min_number ≤ max_number

Items contain the id and name of all items the store sells, quantity is the number of items

currently in store, and size_number is a numeric measure of the size of the item.

Sizes contains designations (like ‘S’, ‘M’, ‘L’, ‘XL’ etc,) of classes of sizes, and the

(inclusive) size interval the class includes, so a row like (‘S’, 36, 38) would say that all

numeric sizes from and including 36 to and including 38 would be considered size ‘S’. The

intervals may overlap, e.g. if the relation includes size designations from different countries,

so a single item may belong in several size designations.

a) Write a relational algebra expression for the name and quantity of all items with sizes

designated ‘L’ and/or ‘XL’.

b) Write a relational algebra expression that finds the designation of all size classes that are

always strictly larger than ‘M’ (for instance it could give ‘L’ and ‘XL’ if all sizes in those

classes are larger than all sizes in the ‘M’-class).

c) Write a relational algebra expression that calculates the total quantity of available items

with idnr 1337 and sizes with designation ‘L’. The result should have a single column, for the

total quantity and always give a single row.

Question 5: Views, constraints and triggers (12 p)

Database integrity can be improved by several techniques:

• Views: virtual tables that show useful information that would create redundancy if

stored in the actual tables

• SQL Constraints: conditions on attribute values and tuples

• Triggers (and assertions): automated checks and actions performed on entire tables

As a general rule, these methods should be applied in the above order: if a view or constraint

can adequately do the job, do not use a trigger.

The task in this question is to implement a small database. You may use any SQL features

we have covered in the course. While the description below gives requirements for what

should be in the database, you are allowed to divide it across as many tables and views as

you need to. Points will be deducted if your solution uses a trigger where a constraint or

view would suffice, or if your solution is drastically over-complicated.

For triggers, it is enough to specify which actions and tables it applies to, and PL/(pg)SQL

pseudo-code of the function it executes. It does not have to be a syntactically correct trigger,

but it needs to be close enough that it is clear how you intend for it to work.

Your task: The database contains dots in a two-dimensional plane and connections between

those dots. The external interface for queries should look like this (constraints not included):

Dots(x_pos, y_pos, idnr, radix)

Connections(from_idnr, to_idnr)

This interface can include views and tables, and additional views and tables may be created

as needed. Each row in Dots is a dot, with a position (x_pos, y_pos are integer

coordinates), an identification number and a radix (see below). Each row in Connections

represents a line from one dot to another, identified by their id-numbers.

Implement the following constraints in your design. Put letters in the margin of your code

indicating where each constraint is implemented (possibly the same letter in several places):

a) There is at most one dot on any position (x,y-pair) and each dot has a unique idnr.

b) Dots can only connect to valid dots (those that are in Dots), and dots cannot be

connected to themselves. Also there cannot be multiple lines to/from the same dots.

c) The radix of a dot should be equal to the number of dots it is connected to.

d) The radix cannot exceed eight. Attempting to add additional connections should fail.

e) All connections are bi-directional, meaning if there is a connection from point A to

point B, there must also be a connection from point B to point A.

f) If a dot is deleted, all its connections should be automatically deleted as well.

Question 6: Semi-structured data and other topics (10 p, 3+4+3)

Read all parts of the question before you start, the answers are not independent.

In this task you will store a log for a meteorological measuring station. The log keeps tracks

of two kinds of data: Performed measurements, and requests for information from users.

Here is an example of a log in plain text, containing a single measurement and a single

request:

Measurement time=1560000000,

 temperature=21,

 windspeed=0,

 rainfall=Error 213 no value found

User Jonas requested temperature, rainfall

 replied with time=1560000000,

 temperature=21,

 rainfall=Error 213 no value found

A measurement always contains a timestamp, and values for a number of additional

parameters, in the example above the additional parameters are temperature, windspeed and

rainfall, but they can be any set of text strings. The values are either numbers or errors.

Errors contain an error code (213 in the example) and an error text (“no value found” in the

example). The order of parameters (including time) is not important. The number and names

of parameters can differ between measurements in the log.

A user request contains a username and a list of parameters (order not important). It also

contains a reply consisting of parameters and values/errors (note the similarity to

measurements). You may assume that replies always contain a time parameter. Your schema

does NOT have to enforce that the reply contains all the requested parameters or that values

are correct in context.

Each whole log should be a single JSON document containing multiple measurements and

served requests (order is important). Each entry must be either a measurement or a request.

a) Encode the example log above in a JSON document.

Regarding syntax: Missing a few quotation marks is not a big deal, but make sure the

structure and what type of JSON elements you are using is clear.

b) Write a JSON Schema for logs. Your solution to a) should be valid in your schema and it.

c) Write a JSON Path expression for finding all temperature values in measurements (but

not in replies!). The expression should work on any log validated by your schema. The result

should be an array containing values/errors.

Solutions for TDA357/DIT621 2019-06-10

1. a)

b)

X(x1,x2)

Z(z1,z2)

Y(y1,y2,z)

 z -> Z.z1

Rxyz(x,z,y1,y2,yz)

 x -> X.x1

 z -> Z.z1

 (y1,y2,yz) -> Y.(y1,y2,z)

Station

Port

Ryz

draught

Route
number

Stops
name

location

time

Start From

time

Vehicle

ISA

Runs

id

type

2

a) Update anomaly e.g. when changing the name of Hermione in on of the two places it occurs.

Deletion anomaly e.g. if deleting all grades issued for course TDA357 and losing the information on

the number of credits the course has.

b)

student_id -> student_name

course_id -> credits

(student_id, course_id) -> grade

c)

Students(student_id, student_name) -- 4 rows

Courses(course_id, credits) -- 3 rows

Grades(student_id, course_id, grade) -- 6 rows

3) SQL Queries (not actually tested these, but they sure look pretty…)

a)

SELECT username, email, contents

 FROM users

 WHERE receiver='admin' AND sender=username AND readtime IS NULL

 ORDER BY sendtime ASC

b)

SELECT AVG(readtime - sendtime)

 FROM messages

 WHERE readtime IS NOT NULL

c)

-- Something like this using WITH, other solutions are possible. Comments are not needed.

WITH

-- Number of messages sent from each user to each receiver

Cnt AS SELECT sender, receiver, COUNT(*) AS cnt

 FROM Messages

 GROUP BY sender, receiver

 ,

-- The maximal number for each sender

Mx AS SELECT sender, MAX(cnt) as mx FROM cnt

 GROUP BY sender

 ,

-- The most common receiver(s) of each sender

Common AS SELECT Cnt.sender, receiver FROM Cnt, Mx

 WHERE Mx.sender = Cnt.sender AND cnt=mx

-- Include users that have not sent any messages

SELECT username, receiver

 FROM Users LEFT OUTER JOIN Common ON username=sender

4

a)

πname, quantity (

 σ(designation='L' OR designation='XL') AND size_number<=max_number AND size_number>=min_number (

 Items X Sizes

))

b)

πdesignation(

 σmin_number > max_number(

 (πdesignation,min_number(Sizes))

 X

 (πmax_number(σdesignation='M' (Sizes)))

))

c)

γsum(quantity)->total(

 σ(designation='L' AND size_number<=max_number AND size_number>=min_number (

 Items X Sizes

))

5 Again – haven’t tested this, not likely to work out of the box, but good enough for full marks

CREATE TABLE Dots_t (

 x_pos INT,

 y_pos INT,

 idnr INT PRIMARY KEY, -- a

 UNIQUE (x_pos, y_pos) -- a

);

CREATE Table Conn_t (

 from_idnr INT REFERENCES Dots_t.idnr -- b

 ON DELETE CASCADE, -- f

 to_idnr INT REFERENCES Dots_t.idnr -- b

 ON DELETE CASCADE, -- f

 CHECK (from_idnr != to_idnr) -- b

 PRIMARY KEY (from_idnr, to_idnr) -- b

);

CREATE View Connections AS

 SELECT from_idnr, to_idnr FROM Conn_t

 UNION

 SELECT to_idnr, from_idnr FROM Conn_t; -- e

CREATE VIEW Dots AS

 SELECT

 x_pos,

 y_pos,

 idnr,

 (SELECT COUNT(*) FROM Connections WHERE from_idnr=idnr) AS radix -

-c

 FROM Dots_t;

-- Acceptable pseudo-code for trigger:

CREATE TRIGGER BEFORE INSERT ON Dots_t -- d

IF ((SELECT radix FROM Dots WHERE idnr=NEW.from_idnr) >= 8 OR

 (SELECT radix FROM Dots WHERE idnr=NEW.to_idnr) >= 8)

 ROLLBACK;

6

a) Here, measurements are simply any objects with a time value, and requests are objects with

"user", "request" and "reply" values. One could add a "type" property to distinguish them.

[{"time":1560000000,

 "temperature":21,

 "windspeed":0,

 "rainfall":{"errnum":213, "text":"no value found"}

 },

 {"user":"Jonas",

 "request":["temperature","rainfall"],

 "reply":

 {"time":1560000000,

 "temperature":21,

 "rainfall":{"errnum":213, "text":"no value found"}

 }

 }

]

b)

{

"type":"array",

"items":{"type":"object",

 "oneOf":[{"$ref":"#/definitions/measurement"},

 {"$ref":"#/definitions/request"}]},

"definitions":{

 "measurement": {"type":"object",

 "additionalProperties":{"$ref":"#/definitions/value"},

 "required":["time"]},

 "request":{"properties":{

 "user": {"type":"string"},

 "request": {"type":"array", "items":{"type":"string"}},

 "reply": {"$ref":"#/definitions/measurement"}},

 "required":["user","request","reply"]},

 "value":{"oneOf":[{"type":"integer"},{"$ref":"#/definitions/error"}]},

 "error":{"type":"object",

 "properties":{ "errnum":{"type":"integer"},

 "text": {"type":"string"}},

 "required":["errnum", "text"]}

 }

}

c) Easy points. May be a lot more complicated for other JSON Schemas.

$.*.temperature

